Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Neuro-symbolic Meta Reinforcement Learning for Trading (2302.08996v1)

Published 15 Jan 2023 in cs.AI, cs.LG, and cs.LO

Abstract: We model short-duration (e.g. day) trading in financial markets as a sequential decision-making problem under uncertainty, with the added complication of continual concept-drift. We, therefore, employ meta reinforcement learning via the RL2 algorithm. It is also known that human traders often rely on frequently occurring symbolic patterns in price series. We employ logical program induction to discover symbolic patterns that occur frequently as well as recently, and explore whether using such features improves the performance of our meta reinforcement learning algorithm. We report experiments on real data indicating that meta-RL is better than vanilla RL and also benefits from learned symbolic features.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.