On solving the MAX-SAT using sum of squares (2302.06931v1)
Abstract: We consider semidefinite programming (SDP) approaches for solving the maximum satisfiability problem (MAX-SAT) and the weighted partial MAX-SAT. It is widely known that SDP is well-suited to approximate the (MAX-)2-SAT. Our work shows the potential of SDP also for other satisfiability problems, by being competitive with some of the best solvers in the yearly MAX-SAT competition. Our solver combines sum of squares (SOS) based SDP bounds and an efficient parser within a branch & bound scheme. On the theoretical side, we propose a family of semidefinite feasibility problems, and show that a member of this family provides the rank two guarantee. We also provide a parametric family of semidefinite relaxations for the MAX-SAT, and derive several properties of monomial bases used in the SOS approach. We connect two well-known SDP approaches for the (MAX)-SAT, in an elegant way. Moreover, we relate our SOS-SDP relaxations for the partial MAX-SAT to the known SAT relaxations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.