2000 character limit reached
The Identity Problem in $\mathbb{Z} \wr \mathbb{Z}$ is decidable (2302.05939v4)
Published 12 Feb 2023 in math.GR and cs.DM
Abstract: We consider semigroup algorithmic problems in the wreath product $\mathbb{Z} \wr \mathbb{Z}$. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain the neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of $\mathbb{Z} \wr \mathbb{Z}$. We show that both problems are decidable. Our result complements the undecidability of the Semigroup Membership Problem (does a semigroup contain a given element?) in $\mathbb{Z} \wr \mathbb{Z}$ shown by Lohrey, Steinberg and Zetzsche (ICALP 2013), and contributes an important step towards solving semigroup algorithmic problems in general metabelian groups.