The Identity Problem in the special affine group of $\mathbb{Z}^2$ (2301.09502v5)
Abstract: We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}2$ that preserve orientation. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain a neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of $\mathsf{SA}(2, \mathbb{Z})$. We show that both problems are decidable and NP-complete. Since $\mathsf{SL}(2, \mathbb{Z}) \leq \mathsf{SA}(2, \mathbb{Z}) \leq \mathsf{SL}(3, \mathbb{Z})$, our result extends that of Bell, Hirvensalo and Potapov (2017) on the NP-completeness of both problems in $\mathsf{SL}(2, \mathbb{Z})$, and contributes a first step towards the open problems in $\mathsf{SL}(3, \mathbb{Z})$.
- Affine SL(2) conformal blocks from 4d gauge theories. Letters in Mathematical Physics, 94(1):87–114, 2010. doi:10.1007/s11005-010-0422-4.
- Las Vegas algorithms for matrix groups. In Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pages 427–436. IEEE, 1993. doi:10.1109/SFCS.1993.366844.
- Multiplicative equations over commuting matrices. In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 498–507, 1996.
- Robert Beals. Algorithms for matrix groups and the tits alternative. Journal of computer and system sciences, 58(2):260–279, 1999. doi:10.1006/jcss.1998.1614.
- The Identity Problem for matrix semigroups in SL2(ℤ)𝑆subscript𝐿2ℤ{SL}_{2}(\mathbb{Z})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z ) is NP-complete. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 187–206. SIAM, 2017. doi:10.1137/1.9781611974782.13.
- Decidable and undecidable problems about quantum automata. SIAM Journal on Computing, 34(6):1464–1473, 2005. doi:10.1137/S0097539703425861.
- F. Blanchard. \textbeta-expansions and symbolic dynamics. Theoretical Computer Science, 65(2):131–141, 1989. doi:10.1016/0304-3975(89)90038-8.
- On the undecidability of the identity correspondence problem and its applications for word and matrix semigroups. International Journal of Foundations of Computer Science, 21(06):963–978, 2010. doi:10.1142/S0129054110007660.
- Murray Bremner. Lattice Basis Reduction. CRC Press New York, 2011. doi:10.1201/b11066.
- Rational subsets of baumslag-solitar groups. In 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages 116:1–116:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.116.
- Some decision problems on integer matrices. RAIRO-Theoretical Informatics and Applications-Informatique Théorique et Applications, 39(1):125–131, 2005. doi:10.1051/ita:2005007.
- Classifying orbits of the affine group over the integers. Ergodic Theory and Dynamical Systems, 37(2):440–453, 2017. doi:10.1017/etds.2015.45.
- On reachability problems for low-dimensional matrix semigroups. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, volume 132 of LIPIcs, pages 44:1–44:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.44.
- When are two elements of GL(2,Z) similar? Linear Algebra and its Applications, 157:175–184, 1991. doi:10.1016/0024-3795(91)90112-A.
- Quantum automata and algebraic groups. Journal of Symbolic Computation, 39(3-4):357–371, 2005. doi:10.1016/j.jsc.2004.11.008.
- Geometric Group Theory, volume 63. American Mathematical Soc., 2018.
- Ruiwen Dong. The Identity Problem in nilpotent groups of bounded class. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3919–3959. SIAM, 2024. doi:10.1137/1.9781611977912.138.
- Jordi Delgado Rodríguez. Extensions of free groups: algebraic, geometric, and algorithmic aspects. PhD thesis, Universitat Politècnica de Catalunya, 2017. doi:10.5821/dissertation-2117-112428.
- Reachability in register machines with polynomial updates. In International Symposium on Mathematical Foundations of Computer Science, pages 409–420. Springer, 2013. doi:10.1007/978-3-642-40313-2_37.
- Extended object tracking on the affine group aff (2). In 2020 IEEE 23rd International Conference on Information Fusion (FUSION), pages 1–8. IEEE, 2020. doi:10.23919/FUSION45008.2020.9190566.
- Mark Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM Journal on Computing, 24(5):948–969, 1995. doi:10.1137/S0097539793252687.
- Polynomial invariants for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 530–539, 2018. doi:10.1145/3209108.3209142.
- On the identity problem for the special linear group and the Heisenberg group. In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 132:1–132:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.132.
- Reachability problems in nondeterministic polynomial maps on the integers. In International Conference on Developments in Language Theory, pages 465–477. Springer, 2018. doi:10.1007/978-3-319-98654-8_38.
- Visual tracking via particle filtering on the affine group. The International Journal of Robotics Research, 29(2-3):198–217, 2010. doi:10.1177/0278364909345167.
- Markus Lohrey. Subgroup membership in GL(2, Z). Theory of Computing Systems, pages 1–26, 2023. doi:10.1007/s00224-023-10122-2.
- A. Markov. On certain insoluble problems concerning matrices. Doklady Akad. Nauk SSSR, 57(6):539–542, 1947.
- K. A. Mikhailova. The occurrence problem for direct products of groups. Matematicheskii Sbornik, 112(2):241–251, 1966. doi:10.2307/2270002.
- Daniele Mundici. Invariant measure under the affine group over ℤℤ\mathbb{Z}blackboard_Z. Combinatorics, Probability and Computing, 23(2):248–268, 2014. doi:10.1017/S096354831300062X.
- Morris Newman. The structure of some subgroups of the modular group. Illinois Journal of Mathematics, 6(3):480–487, 1962. doi:10.1215/ijm/1255632506.
- Affine extensions of integer vector addition systems with states. Logical Methods in Computer Science, 17, 2021. doi:10.46298/lmcs-17(3:1)2021.
- Jean-Pierre Serre. Trees. Springer Science & Business Media, 2002. doi:10.1007/978-3-642-61856-7.
- Richard G. Swan. Groups of cohomological dimension one. Journal of Algebra, 12(4):585–610, 1969. doi:10.1016/0021-8693(69)90030-1.
- Agustí Reventós Tarrida. Affine Maps, Euclidean Motions and Quadrics. Springer, 2011. doi:10.1007/978-0-85729-710-5.
- Jacques Tits. Free subgroups in linear groups. Journal of Algebra, 20(2):250–270, 1972. doi:10.1016/0021-8693(72)90058-0.
- Joseph A. Wolf. The affine group of a Lie group. In Proc. Amer. Math. Soc., volume 14, pages 352–353, 1963. doi:10.2307/2034641.