Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hubbard-Stratonovich Detector for Simple Trainable MIMO Signal Detection (2302.04461v1)

Published 9 Feb 2023 in cs.IT, cs.LG, eess.SP, and math.IT

Abstract: Massive multiple-input multiple-output (MIMO) is a key technology used in fifth-generation wireless communication networks and beyond. Recently, various MIMO signal detectors based on deep learning have been proposed. Especially, deep unfolding (DU), which involves unrolling of an existing iterative algorithm and embedding of trainable parameters, has been applied with remarkable detection performance. Although DU has a lesser number of trainable parameters than conventional deep neural networks, the computational complexities related to training and execution have been problematic because DU-based MIMO detectors usually utilize matrix inversion to improve their detection performance. In this study, we attempted to construct a DU-based trainable MIMO detector with the simplest structure. The proposed detector based on the Hubbard--Stratonovich (HS) transformation and DU is called the trainable HS (THS) detector. It requires only $O(1)$ trainable parameters and its training and execution cost is $O(n2)$ per iteration, where $n$ is the number of transmitting antennas. Numerical results show that the detection performance of the THS detector is better than that of existing algorithms of the same complexity and close to that of a DU-based detector, which has higher training and execution costs than the THS detector.

Summary

We haven't generated a summary for this paper yet.