Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Top-degree components of Grothendieck and Lascoux polynomials (2302.03643v4)

Published 7 Feb 2023 in math.CO

Abstract: The Castelnuovo-Mumford polynomial $\widehat{\mathfrak{G}}w$ with $w \in S_n$ is the highest homogeneous component of the Grothendieck polynomial $\mathfrak{G}_w$. Pechenik, Speyer and Weigandt define a statistic $\mathsf{rajcode}(\cdot)$ on $S_n$ that gives the leading monomial of $\widehat{\mathfrak{G}}_w$. We introduce a statistic $\mathsf{rajcode}(\cdot)$ on any diagram $D$ through a combinatorial construction ``snow diagram'' that augments and decorates $D$. When $D$ is the Rothe diagram of a permutation $w$, $\mathsf{rajcode}(D)$ agrees with the aforementioned $\mathsf{rajcode}(w)$. When $D$ is the key diagram of a weak composition $\alpha$, $\mathsf{rajcode}(D)$ yields the leading monomial of $\widehat{\mathfrak{L}}\alpha$, the highest homogeneous component of the Lascoux polynomials $\mathfrak{L}\alpha$. We use $\widehat{\mathfrak{L}}\alpha$ to construct a basis of $\widehat{V}_n$, the span of $\widehat{\mathfrak{G}}_w$ with $w \in S_n$. Then we show $\widehat{V}_n$ gives a natural algebraic interpretation of a classical $q$-analogue of Bell numbers.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube