Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the convergence of adaptive Galerkin FEM for parametric PDEs with lognormal coefficients (2302.02839v4)

Published 6 Feb 2023 in math.NA and cs.NA

Abstract: Numerically solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin finite element methods. This work investigates a residual based adaptive algorithm, akin to classical adaptive FEM, used to approximate the solution of the stationary diffusion equation with lognormal coefficients, i.e. with a non-affine parameter dependence of the data. It is known that the refinement procedure is reliable but the theoretical convergence of the scheme for this class of unbounded coefficients remains a challenging open question. This paper advances the theoretical state-of-the-art by providing a quasi-error reduction result for the adaptive solution of the lognormal stationary diffusion problem. The presented analysis generalizes previous results in that guaranteed convergence for uniformly bounded coefficients follows directly as a corollary. Moreover, it highlights the fundamental challenges with unbounded coefficients that cannot be overcome with common techniques. A computational benchmark example illustrates the main theoretical statement.

Summary

We haven't generated a summary for this paper yet.