Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion (2008.07186v3)

Published 17 Aug 2020 in math.NA and cs.NA

Abstract: Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error estimator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error estimator is transferred to the collocation setting. Extensions to other variants of adaptive collocation methods (including the classical one proposed in the paper "Dimension-adaptive tensor-product quadratuture" Computing (2003) by T. Gerstner and M. Griebel) is explored.

Citations (15)

Summary

We haven't generated a summary for this paper yet.