Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Analyticity of Steklov Eigenvalues in nearly-hyperspherical domains in \mathbb{R}^{d+1} (2302.00818v1)

Published 2 Feb 2023 in math.AP

Abstract: We consider the Dirichlet-to-Neumann operator (DNO) on nearly-hyperspherical domains in dimension greater than 3. Treating such domains as perturbations of the ball, we prove the analytic dependence of the DNO on the shape perturbation parameter for fixed perturbation functions. Consequently, we conclude that the Steklov eigenvalues are analytic in the shape perturbation parameter as well. To obtain these results, we use the strategy of Nicholls and Nigam (2004), and of Viator and Osting (2020); we transform the Laplace-Dirichlet problem on the perturbed domain to a more complicated, parameter-dependent equation on the ball, and then geometrically bound the Neumann expansion of the transformed DNO. These results are a generalization of the work of Viator and Osting (2020) for dimension 2 and 3.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.