Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Restricted distance-type Gaussian estimators based on density power divergence and their applications in hypothesis testing (2301.13519v2)

Published 31 Jan 2023 in math.ST and stat.TH

Abstract: Zhang (2019) presented a general estimation approach based on the Gaussian distribution for general parametric models where the likelihood of the data is difficult to obtain or unknown, but the mean and variance-covariance matrix are known. Castilla and Zografos (2021) extended the method to density power divergence-based estimators, which are more robust than the likelihood-based Gaussian estimator against data contamination. In this paper we introduce the restricted minimum density power divergence Gaussian estimator (MDPDGE) and study its main asymptotic properties. Also, we examine it robustness through its influence function analysis. Restricted estimators are required in many practical situations, in special in testing composite null hypothesis, and provide here constrained estimators to inherent restrictions of the underlying distribution. Further, we derive robust Rao-type test statistics based on the MDPDGE for testing simple null hypothesis and we deduce explicit expressions for some main important distributions. Finally, we empirically evaluate the efficiency and robustness of the method through a simulation study.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.