Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Tropical Geometric Approach To Exceptional Points (2301.13485v3)

Published 31 Jan 2023 in quant-ph, cond-mat.mes-hall, math-ph, math.AG, and math.MP

Abstract: Non-Hermitian systems have been widely explored in platforms ranging from photonics to electric circuits. A defining feature of non-Hermitian systems is exceptional points (EPs), where both eigenvalues and eigenvectors coalesce. Tropical geometry is an emerging field of mathematics at the interface between algebraic geometry and polyhedral geometry, with diverse applications to science. Here, we introduce and develop a unified tropical geometric framework to characterize different facets of non-Hermitian systems. We illustrate the versatility of our approach using several examples, and demonstrate that it can be used to select from a spectrum of higher-order EPs in gain and loss models, predict the skin effect in the non-Hermitian Su-Schrieffer-Heeger model, and extract universal properties in the presence of disorder in the Hatano-Nelson model. Our work puts forth a new framework for studying non-Hermitian physics and unveils a novel connection of tropical geometry to this field.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com