Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random points are good for universal discretization (2301.12536v4)

Published 29 Jan 2023 in math.FA, cs.NA, math.CA, and math.NA

Abstract: There has been significant progress in the study of sampling discretization of integral norms for both a designated finite-dimensional function space and a finite collection of such function spaces (universal discretization). Sampling discretization results turn out to be very useful in various applications, particularly in sampling recovery. Recent sampling discretization results typically provide existence of good sampling points for discretization. In this paper, we show that independent and identically distributed random points provide good universal discretization with high probability. Furthermore, we demonstrate that a simple greedy algorithm based on those points that are good for universal discretization provides excellent sparse recovery results in the square norm.

Citations (16)

Summary

We haven't generated a summary for this paper yet.