Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some improved bounds in sampling discretization of integral norms (2208.09762v2)

Published 20 Aug 2022 in math.FA, cs.NA, math.CA, math.NA, and math.PR

Abstract: The paper addresses a problem of sampling discretization of integral norms of elements of finite-dimensional subspaces satisfying some conditions. We prove sampling discretization results under a standard assumption formulated in terms of the Nikol'skii-type inequality. {In particular, we obtain} some upper bounds on the number of sample points sufficient for good discretization of the integral $L_p$ norms, $1\le p<2$, of functions from finite-dimensional subspaces of continuous functions. Our new results improve upon the known results in this direction. We use a new technique based on deep results of Talagrand from functional analysis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.