Community Detection in Large Hypergraphs (2301.11226v2)
Abstract: Hypergraphs, describing networks where interactions take place among any number of units, are a natural tool to model many real-world social and biological systems. In this work we propose a principled framework to model the organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlapping ground-truth partitions. Our model is flexible and allows capturing both assortative and disassortative community structures. Moreover, our method scales orders of magnitude faster than competing algorithms, making it suitable for the analysis of very large hypergraphs, containing millions of nodes and interactions among thousands of nodes. Our work constitutes a practical and general tool for hypergraph analysis, broadening our understanding of the organization of real-world higher-order systems.
- Physics Reports 424, 175–308 (2006).
- Physics Reports 874, 1–92 (2020).
- SIAM Review 63, 435-485 (2021).
- Nature Physics 17, 1093–1098 (2021).
- EPJ Data Science 6, 1–16 (2017).
- PLOS Computational Biology 5, e1000385 (2009).
- Proceedings of the National Academy of Sciences 113, 10442–10447 (2016).
- Scientific Reports 11, 1–10 (2021).
- bioRxiv (2022).
- Journal of The Royal Society Interface 11, 20140873 (2014).
- Journal of Computational Neuroscience 41, 1–14 (2016).
- Nature Physics pp. 1–9 (2023).
- Physical Review E 101, 022308 (2020).
- Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 094814 (2016).
- Communications Physics 3, 1–6 (2020).
- Physical Review Letters 124, 218301 (2020).
- Physical Review Research 2, 033410 (2020).
- Nature Communications 12, 1–13 (2021).
- Nature Communications 14, 1605 (2023).
- Nature Communications 10, 1–9 (2019).
- Journal of Physics: Complexity 2, 035019 (2021).
- Physical Review E 101, 032310 (2020).
- Nature Human Behaviour 5, 586–595 (2021).
- Physical Review Letters 127, 268301 (2021).
- arXiv preprint arXiv:2303.11475 (2023).
- A. R. Benson, Three hypergraph eigenvector centralities. SIAM Journal on Mathematics of Data Science 1, 293–312 (2019).
- Communications Physics 4, 1–10 (2021).
- Proceedings of the National Academy of Sciences 115, E11221–E11230 (2018).
- Communications Physics 5, 79 (2022).
- arXiv preprint arXiv:2209.10241 (2022).
- Communications Physics 4, 1–9 (2021).
- arXiv preprint arXiv:2209.12712 (2022).
- Nature Communications 13, 7229 (2022).
- Communications Physics 4, 1–11 (2021).
- J. Mach. Learn. Res. 22, 146–1 (2021).
- arXiv preprint arXiv:1909.06503 (2019).
- arxiv. org (2019).
- Advances in Data Analysis and Classification 16, 691–723 (2022).
- Journal of Physics: Complexity 2, 015011 (2021).
- Communications Physics 4, 1–12 (2021).
- Advances in neural information processing systems 19 (2006).
- Scientific Reports 13, 1–13 (2023).
- Advances in Neural Information Processing Systems 27 (2014).
- IEEE Transactions on Information Theory 65, 6561–6579 (2019).
- Science Advances 7, eabh1303 (2021).
- arXiv preprint arXiv:2210.05983 (2022).
- arXiv preprint arXiv:2212.08593 (2022).
- Advances in neural information processing systems 21 (2008).
- Physical Review E 95, 042317 (2017).
- Journal of Complex Networks 11, cnad019 (2023).
- Science Advances 9, eabq3200 (2023).
- Science advances 3, e1602548 (2017).
- Physical Review E 84, 066106 (2011).
- Social networks 21, 375–395 (2000).
- Journal of Complex Networks 1, 93-123 (2013).
- Nature physics 2, 110–115 (2006).
- PloS one 10, e0119678 (2015).
- Journal of Physics: Complexity 2, 035004 (2021).
- SIAM Journal on Mathematics of Data Science 5, 1–21 (2023).
- P. S. Chodrow, Configuration models of random hypergraphs. Journal of Complex Networks 8, cnaa018 (2020).
- Physical Review Research 3, 023209 (2021).
- Journal of Complex Networks 10, cnac034 (2022).
- Journal of Physics: Complexity 3, 015010 (2022).
- Nature communications 7, 1–11 (2016).
- Scientific reports 10, 1–16 (2020).
- Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79, 1119–1141 (2017).
- Physical Review E 90, 012805 (2014).
- Journal of Open Source Software 8, 5162 (2023).
- Nicolò Ruggeri (9 papers)
- Martina Contisciani (11 papers)
- Federico Battiston (66 papers)
- Caterina De Bacco (51 papers)