A framework to generate hypergraphs with community structure (2212.08593v2)
Abstract: In recent years hypergraphs have emerged as a powerful tool to study systems with multi-body interactions which cannot be trivially reduced to pairs. While highly structured methods to generate synthetic data have proved fundamental for the standardized evaluation of algorithms and the statistical study of real-world networked data, these are scarcely available in the context of hypergraphs. Here we propose a flexible and efficient framework for the generation of hypergraphs with many nodes and large hyperedges, which allows specifying general community structures and tune different local statistics. We illustrate how to use our model to sample synthetic data with desired features (assortative or disassortative communities, mixed or hard community assignments, etc.), analyze community detection algorithms, and generate hypergraphs structurally similar to real-world data. Overcoming previous limitations on the generation of synthetic hypergraphs, our work constitutes a substantial advancement in the statistical modeling of higher-order systems.
- Physics Reports 424, 175–308 (2006).
- nature 393, 440–442 (1998).
- Physical review letters 87, 198701 (2001).
- science 286, 509–512 (1999).
- S. Fortunato, Community detection in graphs. Physics reports 486, 75–174 (2010).
- Physical review E 69, 026113 (2004).
- Physical review E 78, 046110 (2008).
- Physics reports 659, 1–44 (2016).
- Physical review letters 96, 114102 (2006).
- Physical review letters 113, 088701 (2014).
- PloS one 17, e0263184 (2022).
- Frontiers in neuroscience 11, 441 (2017).
- Biological Reviews 96, 2716–2734 (2021).
- Physics Reports 874, 1–92 (2020).
- SIAM Review 63, 435-485 (2021).
- Nature Physics 17, 1093–1098 (2021).
- Journal of The Royal Society Interface 11, 20140873 (2014).
- Journal of Computational Neuroscience 41, 1–14 (2016).
- Nature Physics pp. 1–9 (2023).
- EPJ Data Science 6, 1–16 (2017).
- Nature 548, 210–213 (2017).
- PLOS Computational Biology 5, e1000385 (2009).
- Proceedings of the National Academy of Sciences 113, 10442–10447 (2016).
- Scientific Reports 11, 1–10 (2021).
- bioRxiv (2022).
- Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 094814 (2016).
- Communications Physics 3, 1–6 (2020).
- Physical Review Letters 124, 218301 (2020).
- Physical Review Research 2, 033410 (2020).
- Nature Communications 12, 1–13 (2021).
- Nature Communications 10, 1–9 (2019).
- Journal of Physics: Complexity 2, 035019 (2021).
- Physical Review E 101, 032310 (2020).
- SIAM Review 62, 353–391 (2020).
- Physical Review E 101, 022308 (2020).
- Nature Human Behaviour 5, 586–595 (2021).
- Physical Review Letters 127, 268301 (2021).
- A. R. Benson, Three hypergraph eigenvector centralities. SIAM Journal on Mathematics of Data Science 1, 293–312 (2019).
- Communications Physics 4, 1–10 (2021).
- Proceedings of the National Academy of Sciences 115, E11221–E11230 (2018).
- Communications Physics 5, 79 (2022).
- Communications Physics 4, 1–9 (2021).
- Nature Communications 13, 7229 (2022).
- Communications Physics 4, 1–11 (2021).
- Journal of Physics: Complexity 2, 015011 (2021).
- Communications Physics 4, 1–12 (2021).
- Science Advances 7, eabh1303 (2021).
- Physical Review E 93, 062311 (2016).
- Physical Review E 96, 032312 (2017).
- P. S. Chodrow, Configuration models of random hypergraphs. Journal of Complex Networks 8, cnaa018 (2020).
- M. Barthelemy, Class of models for random hypergraphs. Phys. Rev. E 106, 064310 (2022).
- Physical Review E 104, 054302 (2021).
- P. Krapivsky, Random recursive hypergraphs. Journal of Physics A: Mathematical and Theoretical 56, 195001 (2023).
- arXiv preprint arXiv:1912.07403 (2019).
- Social networks 29, 173–191 (2007).
- Physical Review E 70, 066117 (2004).
- arXiv preprint arXiv:2101.05135 (2021).
- Physical Review E 95, 042317 (2017).
- SIAM review 51, 455–500 (2009).
- Nature 401, 788–791 (1999).
- Physical review E 83, 016107 (2011).
- arXiv preprint arXiv:2301.11226 (2023).
- S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. i. Journal of the Society for Industrial and Applied Mathematics 10, 496–506 (1962).
- S. A. Choudum, A simple proof of the erdos-gallai theorem on graph sequences. Bulletin of the Australian Mathematical Society 33, 67–70 (1986).
- W. K. Hastings, Monte carlo sampling methods using markov chains and their applications (1970).
- arXiv preprint arXiv:1606.00730 (2016).
- SIAM Journal on Mathematics of Data Science 5, 251–279 (2023).
- Advances in neural information processing systems 19 (2006).
- J. H. Fowler, Connecting the congress: A study of cosponsorship networks. Political Analysis 14, 456–487 (2006).
- J. H. Fowler, Legislative cosponsorship networks in the US house and senate. Social networks 28, 454–465 (2006).
- Physica A: Statistical Mechanics and its Applications 364, 581–594 (2006).
- arXiv preprint arXiv:2203.03060 (2022).
- Physical Review E 106, 034319 (2022).
- P. Bonacich, Factoring and weighting approaches to status scores and clique identification. Journal of mathematical sociology 2, 113–120 (1972).
- A. Bretto, Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer (2013).
- arXiv preprint physics/0505137 (2005).
- PloS one 10, e0136497 (2015).
- Journal of the american statistical association 103, 248–258 (2008).
- Scientific reports 10, 1–16 (2020).
- Nature communications 7, 1–11 (2016).
- The European Physical Journal B 90, 1–14 (2017).
- Journal of Physics: Complexity 3, 015010 (2022).
- Journal of Complex Networks 11, cnad019 (2023).
- Random Structures & Algorithms 59, 407–463 (2021).
- https://github.com/PhilChodrow/hypergraph.
- Nicolò Ruggeri (9 papers)
- Federico Battiston (66 papers)
- Caterina De Bacco (51 papers)