Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Re-embedding data to strengthen recovery guarantees of clustering (2301.10901v1)

Published 26 Jan 2023 in cs.LG, math.OC, and stat.ML

Abstract: We propose a clustering method that involves chaining four known techniques into a pipeline yielding an algorithm with stronger recovery guarantees than any of the four components separately. Given $n$ points in $\mathbb Rd$, the first component of our pipeline, which we call leapfrog distances, is reminiscent of density-based clustering, yielding an $n\times n$ distance matrix. The leapfrog distances are then translated to new embeddings using multidimensional scaling and spectral methods, two other known techniques, yielding new embeddings of the $n$ points in $\mathbb R{d'}$, where $d'$ satisfies $d'\ll d$ in general. Finally, sum-of-norms (SON) clustering is applied to the re-embedded points. Although the fourth step (SON clustering) can in principle be replaced by any other clustering method, our focus is on provable guarantees of recovery of underlying structure. Therefore, we establish that the re-embedding improves recovery SON clustering, since SON clustering is a well-studied method that already has provable guarantees.

Summary

We haven't generated a summary for this paper yet.