Stress Tensor Flows, Birefringence in Non-Linear Electrodynamics, and Supersymmetry (2301.10411v3)
Abstract: We identify the unique stress tensor deformation which preserves zero-birefringence conditions in non-linear electrodynamics, which is a $4d$ version of the ${T\overline{T}}$ operator. We study the flows driven by this operator in the three Lagrangian theories without birefringence -- Born-Infeld, Plebanski, and reverse Born-Infeld -- all of which admit ModMax-like generalizations using a root-${T\overline{T}}$-like flow that we analyse in our paper. We demonstrate one way of making this root-${T\overline{T}}$-like flow manifestly supersymmetric by writing the deforming operator in $\mathcal{N} = 1$ superspace and exhibit two examples of superspace flows. We present scalar analogues in $d = 2$ with similar properties as these theories of electrodynamics in $d = 4$. Surprisingly, the Plebanski-type theories are fixed points of the classical ${T\overline{T}}$-like flows, while the Born-Infeld-type examples satisfy new flow equations driven by relevant operators constructed from the stress tensor. Finally, we prove that any theory obtained from a classical stress-tensor-squared deformation of a conformal field theory gives rise to a related ``subtracted'' theory for which the stress-tensor-squared operator is a constant.
- A. B. Zamolodchikov, “Expectation value of composite field T anti-T in two-dimensional quantum field theory,” hep-th/0401146.
- F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B915 (2017) 363–383, 1608.05499.
- A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016) 112, 1608.05534.
- S. Dubovsky, V. Gorbenko, and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 09 (2017) 136, 1706.06604.
- J. Cardy, “The TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry,” JHEP 10 (2018) 186, 1801.06895.
- S. Datta and Y. Jiang, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions,” JHEP 08 (2018) 106, 1806.07426.
- O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular invariance and uniqueness of TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT,” JHEP 01 (2019) 086, 1808.02492.
- J. Cardy, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation of correlation functions,” JHEP 12 (2019) 160, 1907.03394.
- P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07 (2018) 027, 1801.02714.
- M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli, and H. Walsh, “On TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations and supersymmetry,” JHEP 06 (2019) 063, 1811.00533.
- C.-K. Chang, C. Ferko, and S. Sethi, “Supersymmetry and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations,” JHEP 04 (2019) 131, 1811.01895.
- H. Jiang, A. Sfondrini, and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations with 𝒩=(0,2)𝒩02\mathcal{N}=(0,2)caligraphic_N = ( 0 , 2 ) supersymmetry,” Phys. Rev. D100 (2019), no. 4, 046017, 1904.04760.
- C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini, and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flows and (2,2) supersymmetry,” Phys. Rev. D 101 (2020), no. 2, 026008, 1906.00467.
- E. A. Coleman, J. Aguilera-Damia, D. Z. Freedman, and R. M. Soni, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG -deformed actions and (1,1) supersymmetry,” JHEP 10 (2019) 080, 1906.05439.
- C. Ferko, H. Jiang, S. Sethi, and G. Tartaglino-Mazzucchelli, “Non-linear supersymmetry and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows,” JHEP 02 (2020) 016, 1910.01599.
- PhD thesis, Chicago U., 2021. 2112.14647.
- S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations of supersymmetric quantum mechanics,” JHEP 08 (2022) 121, 2204.05897.
- J. Kruthoff and O. Parrikar, “On the flow of states under TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” 2006.03054.
- M. Guica and R. Monten, “Infinite pseudo-conformal symmetries of classical TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG and JTa𝐽subscript𝑇𝑎JT_{a}italic_J italic_T start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT - deformed CFTs,” SciPost Phys. 11 (2021) 078, 2011.05445.
- S. Georgescu and M. Guica, “Infinite TT¯T¯T\mathrm{T\bar{T}}roman_T over¯ start_ARG roman_T end_ARG-like symmetries of compactified LST,” 2212.09768.
- M. Guica, R. Monten, and I. Tsiares, “Classical and quantum symmetries of TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” 2212.14014.
- Y. Jiang, “A pedagogical review on solvable irrelevant deformations of 2D quantum field theory,” Commun. Theor. Phys. 73 (2021), no. 5, 057201, 1904.13376.
- M. Guica, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations and holography,” CERN Winter School on Supergravity, Strings and Gauge Theory (2020).
- A. Giveon, N. Itzhaki, and D. Kutasov, “TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG and LST,” JHEP 07 (2017) 122, 1701.05576.
- A. Giveon, N. Itzhaki, and D. Kutasov, “A solvable irrelevant deformation of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 12 (2017) 155, 1707.05800.
- M. Asrat, A. Giveon, N. Itzhaki, and D. Kutasov, “Holography Beyond AdS,” Nucl. Phys. B932 (2018) 241–253, 1711.02690.
- M. Baggio and A. Sfondrini, “Strings on NS-NS Backgrounds as Integrable Deformations,” Phys. Rev. D98 (2018), no. 2, 021902, 1804.01998.
- S. Frolov, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation and the Light-Cone Gauge,” Proc. Steklov Inst. Math. 309 (2020) 107–126, 1905.07946.
- N. Callebaut, J. Kruthoff, and H. Verlinde, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT as a non-critical string,” JHEP 04 (2020) 084, 1910.13578.
- G. Bonelli, N. Doroud, and M. Zhu, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformations in closed form,” JHEP 06 (2018) 149, 1804.10967.
- T. D. Brennan, C. Ferko, and S. Sethi, “A Non-Abelian Analogue of DBI from TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” SciPost Phys. 8 (2020), no. 4, 052, 1912.12389.
- C. Ferko, Y. Hu, Z. Huang, K. Koutrolikos, and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-Like Flows and 3d3𝑑3d3 italic_d Nonlinear Supersymmetry,” 2302.10410.
- Y. Hu and K. Koutrolikos, “Nonlinear N=2 supersymmetry and 3D supersymmetric Born-Infeld theory,” Nucl. Phys. B 984 (2022) 115970, 2206.01607.
- R. Conti, L. Iannella, S. Negro, and R. Tateo, “Generalised Born-Infeld models, Lax operators and the TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation,” JHEP 11 (2018) 007, 1806.11515.
- C. Ferko, A. Sfondrini, L. Smith, and G. Tartaglino-Mazzucchelli, “Root-TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations in Two-Dimensional Quantum Field Theories,” Phys. Rev. Lett. 129 (2022), no. 20, 201604, 2206.10515.
- P. Rodriguez, D. Tempo, and R. Troncoso, “Mapping relativistic to ultra/non-relativistic conformal symmetries in 2D and finite TT¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations,” JHEP 11 (2021) 133, 2106.09750.
- A. Bagchi, A. Banerjee, and H. Muraki, “Boosting to BMS,” JHEP 09 (2022) 251, 2205.05094.
- R. Conti, J. Romano, and R. Tateo, “Metric approach to a TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-like deformation in arbitrary dimensions,” JHEP 09 (2022) 085, 2206.03415.
- H. Babaei-Aghbolagh, K. Babaei Velni, D. Mahdavian Yekta, and H. Mohammadzadeh, “Marginal TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like deformation and modified Maxwell theories in two dimensions,” Phys. Rev. D 106 (2022), no. 8, 086022, 2206.12677.
- J. Hou, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flow as characteristic flows,” 2208.05391.
- J. A. Garcia and R. A. Sanchez-Isidro, “TT¯𝑇¯𝑇\sqrt{T\bar{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG-deformed oscillator inspired by ModMax,” 2209.06296.
- D. Tempo and R. Troncoso, “Nonlinear automorphism of the conformal algebra in 2D and continuous TT¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations,” JHEP 12 (2022) 129, 2210.00059.
- R. Borsato, C. Ferko, and A. Sfondrini, “On the Classical Integrability of Root-TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Flows,” 2209.14274.
- I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations,” Phys. Rev. D 102 (2020) 121703, 2007.09092.
- I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “On p-form gauge theories and their conformal limits,” JHEP 03 (2021) 022, 2012.09286.
- S. M. Kuzenko, “Superconformal duality-invariant models and 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM effective action,” JHEP 09 (2021) 180, 2106.07173.
- I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “ModMax meets Susy,” JHEP 10 (2021) 031, 2106.07547.
- H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta, and H. Mohammadzadeh, “Emergence of non-linear electrodynamic theories from TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-like deformations,” 2202.11156.
- C. Ferko, L. Smith, and G. Tartaglino-Mazzucchelli, “On Current-Squared Flows and ModMax Theories,” SciPost Phys. 13 (2022), no. 2, 012, 2203.01085.
- D. P. Sorokin, “Introductory Notes on Non-linear Electrodynamics and its Applications,” Fortsch. Phys. 70 (2022), no. 7-8, 2200092, 2112.12118.
- V. Gorbenko, E. Silverstein, and G. Torroba, “dS/dS and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03 (2019) 085, 1811.07965.
- E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba, and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition,” JHEP 07 (2022) 140, 2110.14670.
- G. Torroba, “TT¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT from a 2d gravity path integral,” 2212.04512.
- A. LeClair, “Mingling of the infrared and ultraviolet and the ”cosmological constant” for interacting QFT in 2d,” 2301.09019.
- L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, 1611.03470.
- P. Kraus, R. Monten, and R. M. Myers, “3D Gravity in a Box,” SciPost Phys. 11 (2021) 070, 2103.13398.
- S. Ebert, E. Hijano, P. Kraus, R. Monten, and R. M. Myers, “Field Theory of Interacting Boundary Gravitons,” SciPost Phys. 13 (2022), no. 2, 038, 2201.01780.
- P. Kraus, R. Monten, and K. Roumpedakis, “Refining the cutoff 3d gravity/TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG correspondence,” JHEP 10 (2022) 094, 2206.00674.
- P. Aschieri and S. Ferrara, “Constitutive relations and Schroedinger’s formulation of nonlinear electromagnetic theories,” JHEP 05 (2013) 087, 1302.4737.
- H. Babaei-Aghbolagh, K. Babaei Velni, D. M. Yekta, and H. Mohammadzadeh, “Manifestly SL(2, R) Duality-Symmetric Forms in ModMax Theory,” JHEP 12 (2022) 147, 2210.13196.
- J. Plebanski, “LECTURES ON NON-LINEAR ELECTRODYNAMICS, COPENHAGEN, 1968.,” (1, 1970).
- M. Taylor, “TT deformations in general dimensions,” 1805.10287.
- M. Born and L. Infeld, “Foundations of the new field theory,” Proc. Roy. Soc. Lond. A 144 (1934), no. 852, 425–451.
- I. Bialynicki-Birula, “NONLINEAR ELECTRODYNAMICS: VARIATIONS ON A THEME BY BORN AND INFELD,”.
- G. Boillat, “Vitesses des ondes électrodynamiques et lagrangiens exceptionnels,” Ann. Inst. H. Poincare Phys. Theor. 5 (1966), no. 3, 217–225.
- G. Boillat, “Nonlinear Electrodynamics: Lagrangians and Equations of Motion,” Journal of Mathematical Physics 11 (1970), no. 3, 941–951, https://doi.org/10.1063/1.1665231.
- S. Deser, J. G. McCarthy, and O. Sarioglu, “’Good propagation’ constraints on dual invariant actions in electrodynamics and on massless fields,” Class. Quant. Grav. 16 (1999) 841–847, hep-th/9809153.
- J. G. McCarthy and O. Sarioglu, “Shock free wave propagation in gauge theories,” Int. J. Theor. Phys. 39 (2000) 159–182, math-ph/9902004.
- J. G. Russo and P. K. Townsend, “Nonlinear Electrodynamics without Birefringence,” 2211.10689.
- C. Ferko, S. M. Kuzenko, L. Smith, and G. Tartaglino-Mazzucchelli, “Duality-Invariant Non-linear Electrodynamics and Stress Tensor Flows,” 2309.04253.
- M. K. Gaillard and B. Zumino, “Duality Rotations for Interacting Fields,” Nucl. Phys. B 193 (1981) 221–244.
- G. W. Gibbons and D. A. Rasheed, “Electric - magnetic duality rotations in nonlinear electrodynamics,” Nucl. Phys. B 454 (1995) 185–206, hep-th/9506035.
- M. K. Gaillard and B. Zumino, “Nonlinear electromagnetic selfduality and Legendre transformations,” in A Newton Institute Euroconference on Duality and Supersymmetric Theories, pp. 33–48. 12, 1997. hep-th/9712103.
- M. K. Gaillard and B. Zumino, “Selfduality in nonlinear electromagnetism,” Lect. Notes Phys. 509 (1998) 121, hep-th/9705226.
- M. Hatsuda, K. Kamimura, and S. Sekiya, “Electric magnetic duality invariant Lagrangians,” Nucl. Phys. B 561 (1999) 341–353, hep-th/9906103.
- S. M. Kuzenko and S. Theisen, “Supersymmetric duality rotations,” JHEP 03 (2000) 034, hep-th/0001068.
- X. Bekaert and S. Cucu, “Deformations of duality symmetric theories,” Nucl. Phys. B 610 (2001) 433–460, hep-th/0104048.
- E. A. Ivanov and B. M. Zupnik, “New representation for Lagrangians of selfdual nonlinear electrodynamics,” in Supersymmetries and Quantum Symmetries. Proceedings, 16th Max Born Symposium, SQS’01: Karpacz, Poland, September 21-25, 2001, pp. 235–250. 2002. hep-th/0202203.
- E. A. Ivanov and B. M. Zupnik, “New approach to nonlinear electrodynamics: Dualities as symmetries of interaction,” Phys. Atom. Nucl. 67 (2004) 2188–2199, hep-th/0303192.
- S. M. Kuzenko, “Manifestly duality-invariant interactions in diverse dimensions,” Phys. Lett. B 798 (2019) 134995, 1908.04120.
- P. Aschieri, S. Ferrara, and B. Zumino, “Three lectures on electric-magnetic duality,” SFIN A 1 (2009) 1–42.
- S. M. Kuzenko and E. S. N. Raptakis, “Duality-invariant superconformal higher-spin models,” Phys. Rev. D 104 (2021), no. 12, 125003, 2107.02001.
- J. Bagger and A. Galperin, “A New Goldstone multiplet for partially broken supersymmetry,” Phys. Rev. D55 (1997) 1091–1098, hep-th/9608177.
- S. Ferrara and B. Zumino, “Transformation Properties of the Supercurrent,” Nucl. Phys. B87 (1975) 207.
- S. M. Kuzenko and S. A. McCarthy, “Nonlinear selfduality and supergravity,” JHEP 02 (2003) 038, hep-th/0212039.
- S. M. Kuzenko and S. Theisen, “Nonlinear selfduality and supersymmetry,” Fortsch. Phys. 49 (2001) 273–309, hep-th/0007231.
- Y. Jiang, “Expectation value of TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG operator in curved spacetimes,” JHEP 02 (2020) 094, 1903.07561.
- T. D. Brennan, C. Ferko, E. Martinec, and S. Sethi, “Defining the TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation on AdS2subscriptAdS2\mathrm{AdS}_{2}roman_AdS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” 2005.00431.
- H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta, and H. Mohammadzadeh, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows in non-linear electrodynamic theories and S-duality,” JHEP 04 (2021) 187, 2012.13636.
- Z. Avetisyan, O. Evnin, and K. Mkrtchyan, “Democratic Lagrangians for Nonlinear Electrodynamics,” Phys. Rev. Lett. 127 (2021), no. 27, 271601, 2108.01103.
- Z. Avetisyan, O. Evnin, and K. Mkrtchyan, “Nonlinear (chiral) p-form electrodynamics,” JHEP 08 (2022) 112, 2205.02522.
- S. Ebert, H.-Y. Sun, and Z. Sun, “TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG deformation in SCFTs and integrable supersymmetric theories,” JHEP 09 (2021) 082, 2011.07618.
- K. Lechner, P. Marchetti, A. Sainaghi, and D. P. Sorokin, “Maximally symmetric nonlinear extension of electrodynamics and charged particles,” Phys. Rev. D 106 (2022), no. 1, 016009, 2206.04657.
- M. Guica and R. Monten, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and the mirage of a bulk cutoff,” SciPost Phys. 10 (2021), no. 2, 024, 1906.11251.
- G. Araujo-Regado, R. Khan, and A. C. Wall, “Cauchy Slice Holography: A New AdS/CFT Dictionary,” 2204.00591.
- S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “Root-TT¯𝑇¯𝑇{T\mkern 1.5mu\overline{\mkern-1.5muT\mkern-1.5mu}\mkern 1.5mu}italic_T over¯ start_ARG italic_T end_ARG Deformed Boundary Conditions in Holography.,” To appear. (2023) 23xx.xxxxx.
- S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG in JT Gravity and BF Gauge Theory,” SciPost Phys. 13 (2022), no. 4, 096, 2205.07817.
- C. Ferko and S. Sethi, “Sequential Flows by Irrelevant Operators,” 2206.04787.