Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Statistical Inference and Large-scale Multiple Testing for High-dimensional Regression Models (2301.10392v1)

Published 25 Jan 2023 in stat.ME, math.ST, and stat.TH

Abstract: This paper presents a selective survey of recent developments in statistical inference and multiple testing for high-dimensional regression models, including linear and logistic regression. We examine the construction of confidence intervals and hypothesis tests for various low-dimensional objectives such as regression coefficients and linear and quadratic functionals. The key technique is to generate debiased and desparsified estimators for the targeted low-dimensional objectives and estimate their uncertainty. In addition to covering the motivations for and intuitions behind these statistical methods, we also discuss their optimality and adaptivity in the context of high-dimensional inference. In addition, we review the recent development of statistical inference based on multiple regression models and the advancement of large-scale multiple testing for high-dimensional regression. The R package SIHR has implemented some of the high-dimensional inference methods discussed in this paper.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.