Papers
Topics
Authors
Recent
Search
2000 character limit reached

Understanding and Detecting Hallucinations in Neural Machine Translation via Model Introspection

Published 18 Jan 2023 in cs.CL | (2301.07779v2)

Abstract: Neural sequence generation models are known to "hallucinate", by producing outputs that are unrelated to the source text. These hallucinations are potentially harmful, yet it remains unclear in what conditions they arise and how to mitigate their impact. In this work, we first identify internal model symptoms of hallucinations by analyzing the relative token contributions to the generation in contrastive hallucinated vs. non-hallucinated outputs generated via source perturbations. We then show that these symptoms are reliable indicators of natural hallucinations, by using them to design a lightweight hallucination detector which outperforms both model-free baselines and strong classifiers based on quality estimation or large pre-trained models on manually annotated English-Chinese and German-English translation test beds.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.