Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Channeling quantum criticality (2301.07141v4)

Published 17 Jan 2023 in quant-ph, cond-mat.stat-mech, and hep-th

Abstract: We analyze the effect of decoherence, modelled by local quantum channels, on quantum critical states and we find universal properties of the resulting mixed state's entanglement, both between system and environment and within the system. Renyi entropies exhibit volume law scaling with a subleading constant governed by a "$g$-function" in conformal field theory (CFT), allowing us to define a notion of renormalization group (RG) flow (or "phase transitions") between quantum channels. We also find that the entropy of a subsystem in the decohered state has a subleading logarithmic scaling with subsystem size, and we relate it to correlation functions of boundary condition changing operators in the CFT. Finally, we find that the subsystem entanglement negativity, a measure of quantum correlations within mixed states, can exhibit log scaling or area law based on the RG flow. When the channel corresponds to a marginal perturbation, the coefficient of the log scaling can change continuously with decoherence strength. We illustrate all these possibilities for the critical ground state of the transverse-field Ising model, in which we identify four RG fixed points of dephasing channels and verify the RG flow numerically. Our results are relevant to quantum critical states realized on noisy quantum simulators, in which our predicted entanglement scaling can be probed via shadow tomography methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019), arXiv:1910.11333 [quant-ph] .
  2. B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced Phase Transitions in the Dynamics of Entanglement, Physical Review X 9, 031009 (2019), arXiv:1808.05953 [cond-mat.stat-mech] .
  3. Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect and the many-body entanglement transition, Physical Review B 98, 205136 (2018), arXiv:1808.06134 [quant-ph] .
  4. M. J. Gullans and D. A. Huse, Dynamical Purification Phase Transition Induced by Quantum Measurements, Physical Review X 10, 041020 (2020), arXiv:1905.05195 [quant-ph] .
  5. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020), arXiv:1908.04305 [cond-mat.stat-mech] .
  6. C. de Groot, A. Turzillo, and N. Schuch, Symmetry Protected Topological Order in Open Quantum Systems, Quantum 6, 856 (2022).
  7. R. Ma and C. Wang, Average symmetry-protected topological phases (2022).
  8. J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence (2022).
  9. E. Lake, S. Balasubramanian, and S. Choi, Exact quantum algorithms for quantum phase recognition: Renormalization group and error correction (2022).
  10. J.-H. Zhang, Y. Qi, and Z. Bi, Strange correlation function for average symmetry-protected topological phases, arXiv preprint arXiv:2210.17485  (2022).
  11. M. A. Rajabpour, Entanglement entropy after a partial projective measurement in 1  +  1 dimensional conformal field theories: Exact results, J. Stat. Mech. Theory Exp. 6, 063109 (2016), arXiv:1512.03940 [hep-th] .
  12. S. J. Garratt, Z. Weinstein, and E. Altman, Measurements conspire nonlocally to restructure critical quantum states (2022).
  13. J. Preskill, Lecture notes for physics 229: Quantum information and computation (California Institute of Technology, 1998).
  14. M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional ising model with a defect line, Nuclear Physics B 495, 533 (1997).
  15. G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  16. P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in quantum field theory, Physical Review Letters 109, 10.1103/physrevlett.109.130502 (2012).
  17. P. Calabrese and J. Cardy, Time dependence of correlation functions following a quantum quench, Physical Review Letters 96, 10.1103/physrevlett.96.136801 (2006).
  18. P. Calabrese and J. Cardy, Quantum quenches in extended systems, Journal of Statistical Mechanics: Theory and Experiment 2007, P06008 (2007).
  19. P. Calabrese and J. Cardy, Quantum quenches in 1 dimensional conformal field theories, Journal of Statistical Mechanics: Theory and Experiment 2016, 064003 (2016).
  20. J. Cardy, Bulk Renormalization Group Flows and Boundary States in Conformal Field Theories, SciPost Phys. 3, 011 (2017).
  21. See Supplemental Material for more comments on the applicability of conformal boundary conditions to quantum quench problems.
  22. D. Friedan and A. Konechny, Boundary entropy of one-dimensional quantum systems at low temperature, Physical Review Letters 93, 10.1103/physrevlett.93.030402 (2004).
  23. H. Casini, I. S. Landea, and G. Torroba, The g-theorem and quantum information theory, Journal of High Energy Physics 2016, 10.1007/jhep10(2016)140 (2016).
  24. G. Cuomo, Z. Komargodski, and A. Raviv-Moshe, Renormalization group flows on line defects, Physical Review Letters 128, 10.1103/physrevlett.128.021603 (2022).
  25. I. Affleck and A. W. W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67, 161 (1991).
  26. I. Affleck, Boundary condition changing operations in conformal field theory and condensed matter physics, Nuclear Physics B - Proceedings Supplements 58, 35 (1997), proceedings of the European Research Conference in the Memory of Claude Itzykson.
  27. P. Calabrese, C. Hagendorf, and P. L. Doussal, Time evolution of one-dimensional gapless models from a domain wall initial state: stochastic loewner evolution continued?, Journal of Statistical Mechanics: Theory and Experiment 2008, P07013 (2008).
  28. The coefficient α(n)superscript𝛼𝑛\alpha^{(n)}italic_α start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT can be understood as the line tension of creating the domain wall. It is a non-universal constant that depends on details of the lattice realization.
  29. Supplemental material.
  30. We have observed consistency also for the dephasing in Y𝑌Yitalic_Y direction, which appears to be an irrelevant perturbation for both n=2𝑛2n=2italic_n = 2 and n=3𝑛3n=3italic_n = 3.
  31. F. C. Alcaraz and M. A. Rajabpour, Universal behavior of the shannon mutual information of critical quantum chains, Physical Review Letters 111, 10.1103/physrevlett.111.017201 (2013).
  32. T. Quella, I. Runkel, and G. M. Watts, Reflection and transmission for conformal defects, Journal of High Energy Physics 2007, 095 (2007).
  33. Z. Li, S. Sang, and T. H. Hsieh, Entanglement dynamics of random quantum channels (2022).
  34. H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020).
  35. J. Y. Lee, C.-M. Jian, and C. Xu, Quantum criticality under decoherence or weak measurement (2023).
  36. H. Shapourian, K. Shiozaki, and S. Ryu, Partial time-reversal transformation and entanglement negativity in fermionic systems, Physical Review B 95, 10.1103/physrevb.95.165101 (2017).
  37. Y. Zou, A. Milsted, and G. Vidal, Conformal fields and operator product expansion in critical quantum spin chains, Physical Review Letters 124, 10.1103/physrevlett.124.040604 (2020).
  38. W. W. Ho and T. H. Hsieh, Efficient variational simulation of non-trivial quantum states, SciPost Phys. 6, 029 (2019).
Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.