Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implementations of two Algorithms for the Threshold Synthesis Problem (2301.03667v1)

Published 9 Jan 2023 in cs.LO

Abstract: A linear pseudo-Boolean constraint (LPB) is an expression of the form $a_1 \cdot \ell_1 + \dots + a_m \cdot \ell_m \geq d$, where each $\ell_i$ is a literal (it assumes the value 1 or 0 depending on whether a propositional variable $x_i$ is true or false) and $a_1, \dots, a_m, d$ are natural numbers. An LPB represents a Boolean function, and those Boolean functions that can be represented by exactly one LPB are called threshold functions. The problem of finding an LPB representation of a Boolean function if possible is called threshold recognition problem or threshold synthesis problem. The problem has an $O(m7 t5)$ algorithm using linear programming, where $m$ is the dimension and $t$ the number of terms in the DNF input. It has been an open question whether one can recognise threshold functions through an entirely combinatorial procedure. Smaus has developed such a procedure for doing this, which works by decomposing the DNF and "counting" the variable occurrences in it. We have implemented both algorithms as a thesis project. We report here on this experience. The most important insight was that the algorithm by Smaus is, unfortunately, incomplete.

Summary

We haven't generated a summary for this paper yet.