Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Invariance from Generated Variance for Unsupervised Person Re-identification (2301.00725v1)

Published 2 Jan 2023 in cs.CV

Abstract: This work focuses on unsupervised representation learning in person re-identification (ReID). Recent self-supervised contrastive learning methods learn invariance by maximizing the representation similarity between two augmented views of a same image. However, traditional data augmentation may bring to the fore undesirable distortions on identity features, which is not always favorable in id-sensitive ReID tasks. In this paper, we propose to replace traditional data augmentation with a generative adversarial network (GAN) that is targeted to generate augmented views for contrastive learning. A 3D mesh guided person image generator is proposed to disentangle a person image into id-related and id-unrelated features. Deviating from previous GAN-based ReID methods that only work in id-unrelated space (pose and camera style), we conduct GAN-based augmentation on both id-unrelated and id-related features. We further propose specific contrastive losses to help our network learn invariance from id-unrelated and id-related augmentations. By jointly training the generative and the contrastive modules, our method achieves new state-of-the-art unsupervised person ReID performance on mainstream large-scale benchmarks.

Citations (17)

Summary

We haven't generated a summary for this paper yet.