Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Disentangled Representation for Robust Person Re-identification (1910.12003v2)

Published 26 Oct 2019 in cs.CV

Abstract: We address the problem of person re-identification (reID), that is, retrieving person images from a large dataset, given a query image of the person of interest. A key challenge is to learn person representations robust to intra-class variations, as different persons can have the same attribute and the same person's appearance looks different with viewpoint changes. Recent reID methods focus on learning discriminative features but robust to only a particular factor of variations (e.g., human pose), which requires corresponding supervisory signals (e.g., pose annotations). To tackle this problem, we propose to disentangle identity-related and -unrelated features from person images. Identity-related features contain information useful for specifying a particular person (e.g., clothing), while identity-unrelated ones hold other factors (e.g., human pose, scale changes). To this end, we introduce a new generative adversarial network, dubbed \emph{identity shuffle GAN} (IS-GAN), that factorizes these features using identification labels without any auxiliary information. We also propose an identity-shuffling technique to regularize the disentangled features. Experimental results demonstrate the effectiveness of IS-GAN, significantly outperforming the state of the art on standard reID benchmarks including the Market-1501, CUHK03 and DukeMTMC-reID. Our code and models are available online: https://cvlab-yonsei.github.io/projects/ISGAN/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chanho Eom (11 papers)
  2. Bumsub Ham (40 papers)
Citations (86)

Summary

We haven't generated a summary for this paper yet.