Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 145 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scale-Invariant Survival Probability at Eigenstate Transitions (2212.13888v2)

Published 28 Dec 2022 in quant-ph, cond-mat.dis-nn, cond-mat.quant-gas, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Understanding quantum phase transitions in highly excited Hamiltonian eigenstates is currently far from being complete. It is particularly important to establish tools for their characterization in time domain. Here we argue that a scaled survival probability, where time is measured in units of a typical Heisenberg time, exhibits a scale-invariant behavior at eigenstate transitions. We first demonstrate this property in two paradigmatic quadratic models, the one-dimensional Aubry-Andre model and three-dimensional Anderson model. Surprisingly, we then show that similar phenomenology emerges in the interacting avalanche model of ergodicity breaking phase transitions. This establishes an intriguing similarity between localization transition in quadratic systems and ergodicity breaking phase transition in interacting systems.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.