Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach (2212.13472v1)

Published 27 Dec 2022 in eess.SY, cs.LG, and cs.SY

Abstract: Multi-uncertainties from power sources and loads have brought significant challenges to the stable demand supply of various resources at islands. To address these challenges, a comprehensive scheduling framework is proposed by introducing a model-free deep reinforcement learning (DRL) approach based on modeling an island integrated energy system (IES). In response to the shortage of freshwater on islands, in addition to the introduction of seawater desalination systems, a transmission structure of "hydrothermal simultaneous transmission" (HST) is proposed. The essence of the IES scheduling problem is the optimal combination of each unit's output, which is a typical timing control problem and conforms to the Markov decision-making solution framework of deep reinforcement learning. Deep reinforcement learning adapts to various changes and timely adjusts strategies through the interaction of agents and the environment, avoiding complicated modeling and prediction of multi-uncertainties. The simulation results show that the proposed scheduling framework properly handles multi-uncertainties from power sources and loads, achieves a stable demand supply for various resources, and has better performance than other real-time scheduling methods, especially in terms of computational efficiency. In addition, the HST model constitutes an active exploration to improve the utilization efficiency of island freshwater.

Citations (71)

Summary

We haven't generated a summary for this paper yet.