Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Black Holes with Multiple Photon Spheres (2212.12901v3)

Published 25 Dec 2022 in gr-qc

Abstract: Recently, asymptotically-flat black holes with multiple photon spheres have been discovered and found to produce distinctive observational signatures. In this paper, we focus on whether these black hole solutions are physically viable, e.g., satisfying energy conditions of interest. Intriguingly, black hole and naked singularity solutions with two photon spheres and one anti-photon sphere are shown to exist in physically reasonable models, which satisfy the null, weak, dominant and strong energy conditions. Our findings reveal that black holes with multiple photon spheres may not be frequent, but they are not exotic.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. arXiv:1906.11238, doi:10.3847/2041-8213/ab0ec7.
  2. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. arXiv:1906.11239, doi:10.3847/2041-8213/ab0c96.
  3. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019. arXiv:1906.11240, doi:10.3847/2041-8213/ab0c57.
  4. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019. arXiv:1906.11241, doi:10.3847/2041-8213/ab0e85.
  5. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019. arXiv:1906.11242, doi:10.3847/2041-8213/ab0f43.
  6. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. arXiv:1906.11243, doi:10.3847/2041-8213/ab1141.
  7. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021. arXiv:2105.01169, doi:10.3847/2041-8213/abe71d.
  8. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021. arXiv:2105.01173, doi:10.3847/2041-8213/abe4de.
  9. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi:10.3847/2041-8213/ac6674.
  10. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022. doi:10.3847/2041-8213/ac6675.
  11. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett., 930(2):L14, 2022. doi:10.3847/2041-8213/ac6429.
  12. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett., 930(2):L15, 2022. doi:10.3847/2041-8213/ac6736.
  13. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett., 930(2):L16, 2022. doi:10.3847/2041-8213/ac6672.
  14. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022. doi:10.3847/2041-8213/ac6756.
  15. B.P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016. arXiv:1602.03837, doi:10.1103/PhysRevLett.116.061102.
  16. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D, 79:064016, 2009. arXiv:0812.1806, doi:10.1103/PhysRevD.79.064016.
  17. Quasi-topological Electromagnetism: Dark Energy, Dyonic Black Holes, Stable Photon Spheres and Hidden Electromagnetic Duality. Sci. China Phys. Mech. Astron., 63:240411, 2020. arXiv:1907.10876, doi:10.1007/s11433-019-1446-1.
  18. Echoes from Classical Black Holes. 12 2021. arXiv:2112.14780.
  19. Spontaneous Scalarization of Charged Black Holes. Phys. Rev. Lett., 121(10):101102, 2018. arXiv:1806.05190, doi:10.1103/PhysRevLett.121.101102.
  20. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. arXiv:2104.08703, doi:10.1103/PhysRevD.104.024003.
  21. Photon ring and observational appearance of a hairy black hole. Phys. Rev. D, 104(4):044049, 2021. arXiv:2105.11770, doi:10.1103/PhysRevD.104.044049.
  22. Gravitational Lensing by Black Holes with Multiple Photon Spheres. 4 2022. arXiv:2204.13948.
  23. Appearance of an infalling star in black holes with multiple photon spheres. Sci. China Phys. Mech. Astron., 65(12):120412, 2022. arXiv:2206.13705, doi:10.1007/s11433-022-1986-x.
  24. Photon Spheres and Sonic Horizons in Black Holes from Supergravity and Other Theories. Phys. Rev. D, 94(10):106005, 2016. arXiv:1608.02202, doi:10.1103/PhysRevD.94.106005.
  25. Energy conditions in arbitrary dimensions. PTEP, 2020(4):043E02, 2020. arXiv:1810.02487, doi:10.1093/ptep/ptaa009.
  26. The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2 2011. doi:10.1017/CBO9780511524646.
  27. Pedro V. P. Cunha and Carlos A. R. Herdeiro. Stationary black holes and light rings. Phys. Rev. Lett., 124(18):181101, 2020. arXiv:2003.06445, doi:10.1103/PhysRevLett.124.181101.
  28. Shao-Wen Wei. Topological Charge and Black Hole Photon Spheres. Phys. Rev. D, 102(6):064039, 2020. arXiv:2006.02112, doi:10.1103/PhysRevD.102.064039.
  29. Light rings of stationary spacetimes. Phys. Rev. D, 104(4):044019, 2021. arXiv:2107.07370, doi:10.1103/PhysRevD.104.044019.
  30. Geometric approach to circular photon orbits and black hole shadows. Phys. Rev. D, 106(2):L021501, 2022. arXiv:2204.07297, doi:10.1103/PhysRevD.106.L021501.
  31. Light-Ring Stability for Ultracompact Objects. Phys. Rev. Lett., 119(25):251102, 2017. arXiv:1708.04211, doi:10.1103/PhysRevLett.119.251102.
  32. Quasinormal modes of black holes with multiple photon spheres. JHEP, 06:060, 2022. arXiv:2112.14133, doi:10.1007/JHEP06(2022)060.
  33. Echoes from hairy black holes. JHEP, 06:073, 2022. arXiv:2204.00982, doi:10.1007/JHEP06(2022)073.
  34. A Metric for Rapidly Spinning Black Holes Suitable for Strong-Field Tests of the No-Hair Theorem. Phys. Rev. D, 83:124015, 2011. arXiv:1105.3191, doi:10.1103/PhysRevD.83.124015.
  35. Non-Spinning Black Holes in Alternative Theories of Gravity. Phys. Rev. D, 83:104002, 2011. arXiv:1101.2921, doi:10.1103/PhysRevD.83.104002.
  36. New parametrization for spherically symmetric black holes in metric theories of gravity. Phys. Rev. D, 90(8):084009, 2014. arXiv:1407.3086, doi:10.1103/PhysRevD.90.084009.
  37. Distinguishing gravitational and emission physics in black hole imaging: spherical symmetry. Mon. Not. Roy. Astron. Soc., 513(1):1229–1243, 2022. arXiv:2201.05641, doi:10.1093/mnras/stac891.
  38. Comment on the Analytical Bounds in the Rezzolla-Zhidenko Parametrization. 6 2022. arXiv:2206.03146.
  39. R. A. Konoplya and A. Zhidenko. Analytical representation for metrics of scalarized Einstein-Maxwell black holes and their shadows. Phys. Rev. D, 100(4):044015, 2019. arXiv:1907.05551, doi:10.1103/PhysRevD.100.044015.
  40. Scalarized Einstein-Born-Infeld black holes. Phys. Rev. D, 103(10):104012, 2021. arXiv:2012.01066, doi:10.1103/PhysRevD.103.104012.
  41. Scalarized Einstein–Maxwell-scalar black holes in anti-de Sitter spacetime. Eur. Phys. J. C, 81(10):864, 2021. arXiv:2102.04015, doi:10.1140/epjc/s10052-021-09614-7.
  42. Thermodynamics and phase structure of an Einstein-Maxwell-scalar model in extended phase space. Phys. Rev. D, 105(6):064069, 2022. arXiv:2107.04467, doi:10.1103/PhysRevD.105.064069.
  43. Black holes in galaxies: Environmental impact on gravitational-wave generation and propagation. Phys. Rev. D, 105(6):L061501, 2022. arXiv:2109.00005, doi:10.1103/PhysRevD.105.L061501.
  44. Jorge Ovalle. Decoupling gravitational sources in general relativity: from perfect to anisotropic fluids. Phys. Rev. D, 95(10):104019, 2017. arXiv:1704.05899, doi:10.1103/PhysRevD.95.104019.
  45. J. Ovalle. Decoupling gravitational sources in general relativity: The extended case. Phys. Lett. B, 788:213–218, 2019. arXiv:1812.03000, doi:10.1016/j.physletb.2018.11.029.
  46. Hairy black holes by gravitational decoupling. Phys. Dark Univ., 31:100744, 2021. arXiv:2006.06735, doi:10.1016/j.dark.2020.100744.
  47. Harald H. Soleng. Charged black points in general relativity coupled to the logarithmic U(1) gauge theory. Phys. Rev. D, 52:6178–6181, 1995. arXiv:hep-th/9509033, doi:10.1103/PhysRevD.52.6178.
  48. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett., 80:5056–5059, 1998. arXiv:gr-qc/9911046, doi:10.1103/PhysRevLett.80.5056.
  49. Lovelock black holes with a nonlinear Maxwell field. Phys. Rev. D, 79:044012, 2009. arXiv:0812.2038, doi:10.1103/PhysRevD.79.044012.
  50. Construction of Regular Black Holes in General Relativity. Phys. Rev. D, 94(12):124027, 2016. arXiv:1610.02636, doi:10.1103/PhysRevD.94.124027.
  51. Dilatonic BTZ black holes with power-law field. Phys. Lett. B, 767:214–225, 2017. arXiv:1703.03403, doi:10.1016/j.physletb.2017.01.066.
  52. Testing holographic conjectures of complexity with Born–Infeld black holes. Eur. Phys. J. C, 77(12):817, 2017. arXiv:1703.06297, doi:10.1140/epjc/s10052-017-5395-3.
  53. Thermodynamics of nonlinear electrodynamics black holes and the validity of weak cosmic censorship at charged particle absorption. Eur. Phys. J. C, 79(7):572, 2019. doi:10.1140/epjc/s10052-019-7090-z.
  54. Geometrical aspects of light propagation in nonlinear electrodynamics. Phys. Rev. D, 61:045001, 2000. arXiv:gr-qc/9911085, doi:10.1103/PhysRevD.61.045001.
  55. M. Born and L. Infeld. Foundations of the new field theory. Proc. Roy. Soc. Lond. A, 144(852):425–451, 1934. doi:10.1098/rspa.1934.0059.
  56. Tanay Kr. Dey. Born-Infeld black holes in the presence of a cosmological constant. Phys. Lett. B, 595(1-4):484–490, 2004. arXiv:hep-th/0406169, doi:10.1016/j.physletb.2004.06.047.
  57. Born-Infeld black holes in (A)dS spaces. Phys. Rev. D, 70:124034, 2004. arXiv:hep-th/0410158, doi:10.1103/PhysRevD.70.124034.
  58. Effects of Born–Infeld electrodynamics on black hole shadows. Eur. Phys. J. C, 82(8):683, 2022. arXiv:2205.12779, doi:10.1140/epjc/s10052-022-10637-x.
  59. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B, 493:149–152, 2000. arXiv:gr-qc/0009077, doi:10.1016/S0370-2693(00)01125-4.
  60. The mathematica notebook is publicly available as ancillary files.
  61. Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D, 90(4):044069, 2014. arXiv:1406.5510, doi:10.1103/PhysRevD.90.044069.
  62. The fate of the light-ring instability. 7 2022. arXiv:2207.13713.
Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com