Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exceptional Laurent biorthogonal polynomials through spectral transformations of generalized eigenvalue problems (2212.12429v1)

Published 22 Dec 2022 in math.CA, math-ph, math.MP, and nlin.SI

Abstract: A formulation is given for the spectral transformation of the generalized eigenvalue problem through the decomposition of the second-order differential operators. This allows us to construct some Laurent biorthogonal polynomial systems with gaps in the degree of the polynomial sequence. These correspond to an exceptional-type extension of the orthogonal polynomials, as an extension of the Laurent biorthogonal polynomials. Specifically, we construct the exceptional extension of the Hendriksen-van Rossum polynomials, which are biorthogonal analogs of the classical orthogonal polynomials. Similar to the cases of exceptional extensions of classical orthogonal polynomials, both of state-deletion and state-addition occur.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.