Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HMM-based data augmentation for E2E systems for building conversational speech synthesis systems (2212.11982v1)

Published 22 Dec 2022 in eess.AS

Abstract: This paper proposes an approach to build a high-quality text-to-speech (TTS) system for technical domains using data augmentation. An end-to-end (E2E) system is trained on hidden Markov model (HMM) based synthesized speech and further fine-tuned with studio-recorded TTS data to improve the timbre of the synthesized voice. The motivation behind the work is that issues of word skips and repetitions are usually absent in HMM systems due to their ability to model the duration distribution of phonemes accurately. Context-dependent pentaphone modeling, along with tree-based clustering and state-tying, takes care of unseen context and out-of-vocabulary words. A LLM is also employed to reduce synthesis errors further. Subjective evaluations indicate that speech produced using the proposed system is superior to the baseline E2E synthesis approach in terms of intelligibility when combining complementing attributes from HMM and E2E frameworks. The further analysis highlights the proposed approach's efficacy in low-resource scenarios.

Summary

We haven't generated a summary for this paper yet.