Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prosody-TTS: An end-to-end speech synthesis system with prosody control (2110.02854v1)

Published 6 Oct 2021 in eess.AS and eess.SP

Abstract: End-to-end text-to-speech synthesis systems achieved immense success in recent times, with improved naturalness and intelligibility. However, the end-to-end models, which primarily depend on the attention-based alignment, do not offer an explicit provision to modify/incorporate the desired prosody while synthesizing the signal. Moreover, the state-of-the-art end-to-end systems use autoregressive models for synthesis, making the prediction sequential. Hence, the inference time and the computational complexity are quite high. This paper proposes Prosody-TTS, an end-to-end speech synthesis model that combines the advantages of statistical parametric models and end-to-end neural network models. It also has a provision to modify or incorporate the desired prosody by controlling the fundamental frequency (f0) and the phone duration. Generating speech samples with appropriate prosody and rhythm helps in improving the naturalness of the synthesized speech. We explicitly model the duration of the phoneme and the f0 to have control over them during the synthesis. The model is trained in an end-to-end fashion to directly generate the speech waveform from the input text, which in turn depends on the auxiliary subtasks of predicting the phoneme duration, f0, and mel spectrogram. Experiments on the Telugu language data of the IndicTTS database show that the proposed Prosody-TTS model achieves state-of-the-art performance with a mean opinion score of 4.08, with a very low inference time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Giridhar Pamisetty (1 paper)
  2. K. Sri Rama Murty (2 papers)
Citations (14)