Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Physics-Informed Neural Networks for Robust System Identification of Power Systems (2212.11911v1)

Published 22 Dec 2022 in eess.SY and cs.SY

Abstract: This paper introduces for the first time, to the best of our knowledge, the Bayesian Physics-Informed Neural Networks for applications in power systems. Bayesian Physics-Informed Neural Networks (BPINNs) combine the advantages of Physics-Informed Neural Networks (PINNs), being robust to noise and missing data, with Bayesian modeling, delivering a confidence measure for their output. Such a confidence measure can be very valuable for the operation of safety critical systems, such as power systems, as it offers a degree of trustworthiness for the neural network output. This paper applies the BPINNs for robust identification of the system inertia and damping, using a single machine infinite bus system as the guiding example. The goal of this paper is to introduce the concept and explore the strengths and weaknesses of BPINNs compared to existing methods. We compare BPINNs with the PINNs and the recently popular method for system identification, SINDy. We find that BPINNs and PINNs are robust against all noise levels, delivering estimates of the system inertia and damping with significantly lower error compared to SINDy, especially as the noise levels increases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.