Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Content Relationships for Distilling Efficient GANs (2212.11091v1)

Published 21 Dec 2022 in cs.CV

Abstract: This paper proposes a content relationship distillation (CRD) to tackle the over-parameterized generative adversarial networks (GANs) for the serviceability in cutting-edge devices. In contrast to traditional instance-level distillation, we design a novel GAN compression oriented knowledge by slicing the contents of teacher outputs into multiple fine-grained granularities, such as row/column strips (global information) and image patches (local information), modeling the relationships among them, such as pairwise distance and triplet-wise angle, and encouraging the student to capture these relationships within its output contents. Built upon our proposed content-level distillation, we also deploy an online teacher discriminator, which keeps updating when co-trained with the teacher generator and keeps freezing when co-trained with the student generator for better adversarial training. We perform extensive experiments on three benchmark datasets, the results of which show that our CRD reaches the most complexity reduction on GANs while obtaining the best performance in comparison with existing methods. For example, we reduce MACs of CycleGAN by around 40x and parameters by over 80x, meanwhile, 46.61 FIDs are obtained compared with these of 51.92 for the current state-of-the-art. Code of this project is available at https://github.com/TheKernelZ/CRD.

Citations (2)

Summary

We haven't generated a summary for this paper yet.