Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intransitively winning chess players positions (2212.11069v1)

Published 11 Dec 2022 in math.HO and cs.AI

Abstract: Positions of chess players in intransitive (rock-paper-scissors) relations are considered. Namely, position A of White is preferable (it should be chosen if choice is possible) to position B of Black, position B of Black is preferable to position C of White, position C of White is preferable to position D of Black, but position D of Black is preferable to position A of White. Intransitivity of winningness of positions of chess players is considered to be a consequence of complexity of the chess environment -- in contrast with simpler games with transitive positions only. The space of relations between winningness of positions of chess players is non-Euclidean. The Zermelo-von Neumann theorem is complemented by statements about possibility vs. impossibility of building pure winning strategies based on the assumption of transitivity of positions of chess players. Questions about the possibility of intransitive positions of players in other positional games are raised.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com