Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical method and Error estimate for stochastic Landau--Lifshitz--Bloch equation (2212.10833v1)

Published 21 Dec 2022 in math.NA, cs.NA, math.AP, and math.PR

Abstract: We study numerical methods for solving a system of quasilinear stochastic partial differential equations known as the stochastic Landau-Lifshitz-Bloch (LLB) equation on a bounded domain in $\mathbb Rd$ for $d=1,2$. Our main results are estimates of the rate of convergence of the Finite Element Method to the solutions of stochastic LLB. To overcome the lack of regularity of the solution in the case $d=2$, we propose a Finite Element scheme for a regularised version of the equation. We then obtain error estimates of numerical solutions and for the solution of the regularised equation as well as the rate of convergence of this solution to the solution of the stochastic LLB equation. As a consequence, the convergence in probability of the approximate solutions to the solution of the stochastic LLB equation is derived. To the best of our knowledge this is the first result on error estimates for a system of stochastic quasilinear partial differential equations. A stronger result is obtained in the case $d=1$ due to a new regularity result for the LLB equation which allows us to avoid regularisation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.