Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness-aware Personalized Ranking Recommendation via Adversarial Learning (2103.07849v1)

Published 14 Mar 2021 in cs.IR

Abstract: Recommendation algorithms typically build models based on historical user-item interactions (e.g., clicks, likes, or ratings) to provide a personalized ranked list of items. These interactions are often distributed unevenly over different groups of items due to varying user preferences. However, we show that recommendation algorithms can inherit or even amplify this imbalanced distribution, leading to unfair recommendations to item groups. Concretely, we formalize the concepts of ranking-based statistical parity and equal opportunity as two measures of fairness in personalized ranking recommendation for item groups. Then, we empirically show that one of the most widely adopted algorithms -- Bayesian Personalized Ranking -- produces unfair recommendations, which motivates our effort to propose the novel fairness-aware personalized ranking model. The debiased model is able to improve the two proposed fairness metrics while preserving recommendation performance. Experiments on three public datasets show strong fairness improvement of the proposed model versus state-of-the-art alternatives. This is paper is an extended and reorganized version of our SIGIR 2020~\cite{zhu2020measuring} paper. In this paper, we re-frame the studied problem as `item recommendation fairness' in personalized ranking recommendation systems, and provide more details about the training process of the proposed model and details of experiment setup.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ziwei Zhu (59 papers)
  2. Jianling Wang (58 papers)
  3. James Caverlee (56 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.