On the string topology of symmetric spaces of higher rank (2212.09350v4)
Abstract: The homology of the free and the based loop space of a compact globally symmetric space can be studied through explicit cycles. We use cycles constructed by Bott and Samelson and by Ziller to study the string topology coproduct and the Chas-Sullivan product on compact symmetric spaces. We show that the Chas-Sullivan product for compact symmetric spaces is highly non-trivial for any rank and we prove that there are many non-nilpotent classes whose powers correspond to the iteration of closed geodesics. Moreover, we show that the based string topology coproduct is trivial for compact symmetric spaces of higher rank and we study the implications of this result for the string topology coproduct on the free loop space.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.