Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Levelwise construction of a single cylindrical algebraic cell (2212.09309v2)

Published 19 Dec 2022 in cs.SC

Abstract: Satisfiability Modulo Theories (SMT) solvers check the satisfiability of quantifier-free first-order logic formulas. We consider the theory of non-linear real arithmetic where the formulae are logical combinations of polynomial constraints. Here a commonly used tool is the Cylindrical Algebraic Decomposition (CAD) to decompose real space into cells where the constraints are truth-invariant through the use of projection polynomials. An improved approach is to repackage the CAD theory into a search-based algorithm: one that guesses sample points to satisfy the formula, and generalizes guesses that conflict constraints to cylindrical cells around samples which are avoided in the continuing search. Such an approach can lead to a satisfying assignment more quickly, or conclude unsatisfiability with fewer cells. A notable example of this approach is Jovanovi\'c and de Moura's NLSAT algorithm. Since these cells are produced locally to a sample we might need fewer projection polynomials than the traditional CAD projection. The original NLSAT algorithm reduced the set a little; while Brown's single cell construction reduced it much further still. However, the shape and size of the cell produced depends on the order in which the polynomials are considered. This paper proposes a method to construct such cells levelwise, i.e. built level-by-level according to a variable ordering. We still use a reduced number of projection polynomials, but can now consider a variety of different reductions and use heuristics to select the projection polynomials in order to optimise the shape of the cell under construction. We formulate all the necessary theory as a proof system: while not a common presentation for work in this field, it allows an elegant decoupling of heuristics from the algorithm and its proof of correctness.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube