Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints (2212.08297v2)

Published 16 Dec 2022 in q-fin.MF and q-fin.CP

Abstract: We consider the joint SPX-VIX calibration within a general class of Gaussian polynomial volatility models in which the volatility of the SPX is assumed to be a polynomial function of a Gaussian Volterra process defined as a stochastic convolution between a kernel and a Brownian motion. By performing joint calibration to daily SPX-VIX implied volatility surface data between 2012 and 2022, we compare the empirical performance of different kernels and their associated Markovian and non-Markovian models, such as rough and non-rough path-dependent volatility models. In order to ensure an efficient calibration and a fair comparison between the models, we develop a generic unified method in our class of models for fast and accurate pricing of SPX and VIX derivatives based on functional quantization and Neural Networks. For the first time, we identify a \textit{conventional one-factor Markovian continuous stochastic volatility model} that is able to achieve remarkable fits of the implied volatility surfaces of the SPX and VIX together with the term structure of VIX futures. What is even more remarkable is that our conventional one-factor Markovian continuous stochastic volatility model outperforms, in all market conditions, its rough and non-rough path-dependent counterparts with the same number of parameters.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com