Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte-Carlo Tree-Search for Leveraging Performance of Blackbox Job-Shop Scheduling Heuristics (2212.07543v1)

Published 14 Dec 2022 in cs.AI and math.OC

Abstract: In manufacturing, the production is often done on out-of-the-shelf manufacturing lines, whose underlying scheduling heuristics are not known due to the intellectual property. We consider such a setting with a black-box job-shop system and an unknown scheduling heuristic that, for a given permutation of jobs, schedules the jobs for the black-box job-shop with the goal of minimizing the makespan. Here, the jobs need to enter the job-shop in the given order of the permutation, but may take different paths within the job shop, which depends on the black-box heuristic. The performance of the black-box heuristic depends on the order of the jobs, and the natural problem for the manufacturer is to find an optimum ordering of the jobs. Facing a real-world scenario as described above, we engineer the Monte-Carlo tree-search for finding a close-to-optimum ordering of jobs. To cope with a large solutions-space in planning scenarios, a hierarchical Monte-Carlo tree search (H-MCTS) is proposed based on abstraction of jobs. On synthetic and real-life problems, H-MCTS with integrated abstraction significantly outperforms pure heuristic-based techniques as well as other Monte-Carlo search variants. We furthermore show that, by modifying the evaluation metric in H-MCTS, it is possible to achieve other optimization objectives than what the scheduling heuristics are designed for -- e.g., minimizing the total completion time instead of the makespan. Our experimental observations have been also validated in real-life cases, and our H-MCTS approach has been implemented in a production plant's controller.

Summary

We haven't generated a summary for this paper yet.