Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling (1210.0374v1)

Published 1 Oct 2012 in cs.DS

Abstract: Greedy heuristics may be attuned by looking ahead for each possible choice, in an approach called the rollout or Pilot method. These methods may be seen as meta-heuristics that can enhance (any) heuristic solution, by repetitively modifying a master solution: similarly to what is done in game tree search, better choices are identified using lookahead, based on solutions obtained by repeatedly using a greedy heuristic. This paper first illustrates how the Pilot method improves upon some simple well known dispatch heuristics for the job-shop scheduling problem. The Pilot method is then shown to be a special case of the more recent Monte Carlo Tree Search (MCTS) methods: Unlike the Pilot method, MCTS methods use random completion of partial solutions to identify promising branches of the tree. The Pilot method and a simple version of MCTS, using the $\varepsilon$-greedy exploration paradigms, are then compared within the same framework, consisting of 300 scheduling problems of varying sizes with fixed-budget of rollouts. Results demonstrate that MCTS reaches better or same results as the Pilot methods in this context.

Citations (19)

Summary

We haven't generated a summary for this paper yet.