Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Estimation of the non-Gaussian Dimension in Structural Linear Models (2212.07263v2)

Published 14 Dec 2022 in econ.EM

Abstract: Statistical identification of possibly non-fundamental SVARMA models requires structural errors: (i) to be an i.i.d process, (ii) to be mutually independent across components, and (iii) each of them must be non-Gaussian distributed. Hence, provided the first two requisites, it is crucial to evaluate the non-Gaussian identification condition. We address this problem by relating the non-Gaussian dimension of structural errors vector to the rank of a matrix built from the higher-order spectrum of reduced-form errors. This makes our proposal robust to the roots location of the lag polynomials, and generalizes the current procedures designed for the restricted case of a causal structural VAR model. Simulation exercises show that our procedure satisfactorily estimates the number of non-Gaussian components.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.