Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Non-local finite-depth circuits for constructing SPT states and quantum cellular automata (2212.06844v4)

Published 13 Dec 2022 in quant-ph and cond-mat.str-el

Abstract: Whether a given target state can be prepared by starting with a simple product state and acting with a finite-depth quantum circuit is a key question in condensed matter physics and quantum information science. It underpins classifications of topological phases, as well as the understanding of topological quantum codes, and has obvious relevance for device implementations. Traditionally, this question assumes that the quantum circuit is made up of unitary gates that are geometrically local. Inspired by the advent of noisy intermediate-scale quantum devices, we reconsider this question with $k$-local gates, i.e. gates that act on no more than $k$ degrees of freedom, but are not restricted to be geometrically local. First, we construct explicit finite-depth circuits of symmetric $k$-local gates which create symmetry-protected topological (SPT) states from an initial a product state. Our construction applies both to SPT states protected by global symmetries and subsystem symmetries, but not to those with higher-form symmetries, which we conjecture remain nontrivial. Next, we show how to implement arbitrary translationally invariant quantum cellular automata (QCA) in any dimension using finite-depth circuits of $k$-local gates. These results imply that the topological classifications of SPT phases and QCA both collapse to a single trivial phase in the presence of $k$-local interactions. We furthermore argue that SPT phases are fragile to generic $k$-local symmetric perturbations. We conclude by discussing the implications for other phases, such as fracton phases, and surveying future directions. Our analysis opens a new experimentally motivated conceptual direction examining the stability of phases and the feasibility of state preparation without the assumption of geometric locality.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube