Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A magic approach to octonionic Rosenfeld spaces (2212.06426v1)

Published 13 Dec 2022 in math.RA, math-ph, and math.MP

Abstract: In his study on the geometry of Lie groups, Rosenfeld postulated a strict relation between all real forms of exceptional Lie groups and the isometries of projective and hyperbolic spaces over the (rank-2) tensor product of Hurwitz algebras taken with appropriate conjugations. Unfortunately, the procedure carried out by Rosenfeld was not rigorous, since many of the theorems he had been using do not actually hold true in the case of algebras that are not alternative nor power-associative. A more rigorous approach to the definition of all the planes presented more than thirty years ago by Rosenfeld in terms of their isometry group, can be considered within the theory of coset manifolds, which we exploit in this work, by making use of all real forms of Magic Squares of order three and two over Hurwitz normed division algebras and their split versions. Within our analysis, we find 7 pseudo-Riemannian symmetric coset manifolds which seemingly cannot have any interpretation within Rosenfeld's framework. We carry out a similar analysis for Rosenfeld lines, obtaining that there are a number of pseudo-Riemannian symmetric cosets which do not have any interpretation `a la Rosenfeld.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.