Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring (2212.05866v4)

Published 12 Dec 2022 in stat.ML, cs.LG, econ.EM, and stat.ME

Abstract: As they play an increasingly important role in determining access to credit, credit scoring models are under growing scrutiny from banking supervisors and internal model validators. These authorities need to monitor the model performance and identify its key drivers. To facilitate this, we introduce the XPER methodology to decompose a performance metric (e.g., AUC, $R2$) into specific contributions associated with the various features of a forecasting model. XPER is theoretically grounded on Shapley values and is both model-agnostic and performance metric-agnostic. Furthermore, it can be implemented either at the model level or at the individual level. Using a novel dataset of car loans, we decompose the AUC of a machine-learning model trained to forecast the default probability of loan applicants. We show that a small number of features can explain a surprisingly large part of the model performance. Notably, the features that contribute the most to the predictive performance of the model may not be the ones that contribute the most to individual forecasts (SHAP). Finally, we show how XPER can be used to deal with heterogeneity issues and improve performance.

Summary

We haven't generated a summary for this paper yet.