Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Conditional-mean Multiplicative Operator Models for Count Time Series (2212.05831v2)

Published 12 Dec 2022 in stat.ME, math.ST, and stat.TH

Abstract: Multiplicative error models (MEMs) are commonly used for real-valued time series, but they cannot be applied to discrete-valued count time series as the involved multiplication would not preserve the integer nature of the data. Thus, the concept of a multiplicative operator for counts is proposed (as well as several specific instances thereof), which are then used to develop a kind of MEMs for count time series (CMEMs). If equipped with a linear conditional mean, the resulting CMEMs are closely related to the class of so-called integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) models and might be used as a semi-parametric extension thereof. Important stochastic properties of different types of INGARCH-CMEM as well as relevant estimation approaches are derived, namely types of quasi-maximum likelihood and weighted least squares estimation. The performance and application are demonstrated with simulations as well as with two real-world data examples.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube