Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Numerical assessments of a nonintrusive surrogate model based on recurrent neural networks and proper orthogonal decomposition: Rayleigh Benard convection (2212.05384v1)

Published 11 Dec 2022 in physics.comp-ph

Abstract: Recent developments in diagnostic and computing technologies offer to leverage numerous forms of nonintrusive modeling approaches from data where machine learning can be used to build computationally cheap and accurate surrogate models. To this end, we present a nonlinear proper orthogonal decomposition (POD) framework, denoted as NLPOD, to forge a nonintrusive reduced-order model for the Boussinesq equations. In our NLPOD approach, we first employ the POD procedure to obtain a set of global modes to build a linear-fit latent space and utilize an autoencoder network to compress the projection of this latent space through a nonlinear unsupervised mapping of POD coefficients. Then, long short-term memory (LSTM) neural network architecture is utilized to discover temporal patterns in this low-rank manifold. While performing a detailed sensitivity analysis for hyperparameters of the LSTM model, the trade-off between accuracy and efficiency is systematically analyzed for solving a canonical Rayleigh-Benard convection system.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube