Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Meromorphic Parahoric Higgs Torsors and Filtered Stokes G-local Systems on Curves (2212.04939v3)

Published 9 Dec 2022 in math.AG and math.DG

Abstract: In this paper, we consider the wild nonabelian Hodge correspondence for principal $G$-bundles on curves, where $G$ is a connected complex reductive group. We establish the correspondence under a ``very good" condition introduced by Boalch, and thus confirm one of his conjectures. We first give a version of Kobayashi--Hitchin correspondence, which induces a one-to-one correspondence between stable meromorphic parahoric Higgs torsors of degree zero (Dolbeault side) and stable meromorphic parahoric connections of degree zero (de Rham side). Then, by introducing a notion of stability condition on filtered Stokes local systems, we prove a one-to-one correspondence between stable meromorphic parahoric connections of degree zero (de Rham side) and stable filtered Stokes $G$-local systems of degree zero (Betti side). When $G={\rm GL}_n(\mathbb{C})$, the main result in this paper reduces to Biquad--Boalch's result.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.