Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

The Physics of Fast Radio Bursts (2212.03972v2)

Published 7 Dec 2022 in astro-ph.HE and astro-ph.CO

Abstract: Fast radio bursts (FRBs), millisecond-duration bursts prevailing in the radio sky, are the latest big puzzle in the universe and have been a subject of intense observational and theoretical investigations in recent years. The rapid accumulation of the observational data has painted the following sketch about the physical origin of FRBs: They predominantly originate from cosmological distances so that their sources produce the most extreme coherent radio emission in the universe; at least some, probably most, FRBs are repeating sources that do not invoke cataclysmic events; and at least some FRBs are produced by magnetars, neutron stars with the strongest magnetic fields in the universe. Many open questions regarding the physical origin(s) and mechanism(s) of FRBs remain. This article reviews the phenomenology and possible underlying physics of FRBs. Topics include: a summary of the observational data, basic plasma physics, general constraints on FRB models from the data, radiation mechanisms, source and environment models, propagation effects, as well as FRBs as cosmological probes. Current pressing problems and future prospects are also discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (88)
  1. Bagchi, M. (2017), Astrophys. J. 838 (2), L16, arXiv:1702.08876 [astro-ph.HE] .
  2. Bailes, M. (2022), Science 378 (6620), abj3043, arXiv:2211.06048 [astro-ph.HE] .
  3. Beloborodov, A. M. (2009), Astrophys. J.  703 (1), 1044, arXiv:0812.4873 [astro-ph] .
  4. Beloborodov, A. M. (2017), Astrophys. J. 843, L26, arXiv:1702.08644 [astro-ph.HE] .
  5. Beloborodov, A. M. (2020), Astrophys. J.  896 (2), 142, arXiv:1908.07743 [astro-ph.HE] .
  6. Beloborodov, A. M. (2021a), Astrophys. J. 922 (1), L7, arXiv:2108.07881 [astro-ph.HE] .
  7. Beloborodov, A. M. (2021b), arXiv e-prints , arXiv:2108.05464arXiv:2108.05464 [astro-ph.HE] .
  8. Dai, Z. G. (2019), Astrophys. J. 873, L13, arXiv:1902.07939 [astro-ph.HE] .
  9. Dai, Z. G. (2020), Astrophys. J. 897 (2), L40, arXiv:2005.12048 [astro-ph.HE] .
  10. Dicke, R. H. (1954), Physical Review 93 (1), 99.
  11. Draine, B. T. (2011), Physics of the Interstellar and Intergalactic Medium.
  12. Ghisellini, G. (2017), Mon. Not. R. Astron. Soc. 465, L30, arXiv:1609.04815 [astro-ph.HE] .
  13. Gruzinov, A. (2019), arXiv e-prints , arXiv:1912.08150arXiv:1912.08150 [astro-ph.HE] .
  14. Hawking, S. W. (1974), Nature (London) 248 (5443), 30.
  15. Inoue, S. (2004), Mon. Not. R. Astron. Soc. 348, 999, astro-ph/0309364 .
  16. Ioka, K. (2003), Astrophys. J. 598, L79, astro-ph/0309200 .
  17. Ioka, K. (2020), Astrophys. J. 904 (2), L15, arXiv:2008.01114 [astro-ph.HE] .
  18. Iwazaki, A. (2015), Phys. Rev. D 91 (2), 023008, arXiv:1410.4323 [hep-ph] .
  19. Iwazaki, A. (2021), Phys. Rev. D 104 (4), 043022, arXiv:2104.11389 [astro-ph.HE] .
  20. Jaroszynski, M. (2019), Mon. Not. R. Astron. Soc. 484 (2), 1637, arXiv:1812.11936 [astro-ph.CO] .
  21. Katz, J. I. (1982), Astrophys. J.  260, 371.
  22. Katz, J. I. (2014), Phys. Rev. D 89 (10), 103009, arXiv:1309.3538 [astro-ph.HE] .
  23. Katz, J. I. (2016), Astrophys. J.  826, 226, arXiv:1512.04503 [astro-ph.HE] .
  24. Katz, J. I. (2017a), Mon. Not. R. Astron. Soc. 469 (1), L39, arXiv:1702.02161 [astro-ph.HE] .
  25. Katz, J. I. (2017b), Mon. Not. R. Astron. Soc. 471 (1), L92, arXiv:1704.08301 [astro-ph.HE] .
  26. Katz, J. I. (2018a), Mon. Not. R. Astron. Soc. 481 (3), 2946, arXiv:1803.01938 [astro-ph.HE] .
  27. Katz, J. I. (2018b), Progress in Particle and Nuclear Physics 103, 1, arXiv:1804.09092 [astro-ph.HE] .
  28. Katz, J. I. (2019), Mon. Not. R. Astron. Soc. 487 (1), 491, arXiv:1811.10755 [astro-ph.HE] .
  29. Katz, J. I. (2020a), Mon. Not. R. Astron. Soc. 494 (1), L64, arXiv:1912.00526 [astro-ph.HE] .
  30. Katz, J. I. (2020b), Mon. Not. R. Astron. Soc. 499 (2), 2319, arXiv:2006.03468 [astro-ph.HE] .
  31. Katz, J. I. (2022a), Mon. Not. R. Astron. Soc. 516 (1), L58, arXiv:2205.15385 [astro-ph.HE] .
  32. Katz, J. I. (2022b), Mon. Not. R. Astron. Soc. 513 (2), 1925, arXiv:2201.02910 [astro-ph.HE] .
  33. Kompaneets, A. S. (1957), Soviet Journal of Experimental and Theoretical Physics 4 (5), 730.
  34. Kulkarni, S. R. (2020), arXiv e-prints , arXiv:2007.02886arXiv:2007.02886 [astro-ph.HE] .
  35. Kulsrud, R. M. (2005), Plasma physics for astrophysics.
  36. Laha, R. (2020), Phys. Rev. D 102 (2), 023016.
  37. Lai, D. (2012), Astrophys. J. 757 (1), L3, arXiv:1206.3723 [astro-ph.HE] .
  38. Lieu, R. (2017), Astrophys. J.  834 (2), 199, arXiv:1611.03094 [astro-ph.HE] .
  39. Lyubarsky, Y. (2008), Astrophys. J.  682 (2), 1443, arXiv:0804.2069 [astro-ph] .
  40. Lyubarsky, Y. (2014), Mon. Not. R. Astron. Soc. 442, L9, arXiv:1401.6674 [astro-ph.HE] .
  41. Lyubarsky, Y. (2020), Astrophys. J.  897 (1), 1, arXiv:2001.02007 [astro-ph.HE] .
  42. Lyubarsky, Y. (2021), Universe 7 (3), 56, arXiv:2103.00470 [astro-ph.HE] .
  43. Lyutikov, M. (2017), Astrophys. J. 838 (1), L13, arXiv:1701.02003 [astro-ph.HE] .
  44. Lyutikov, M. (2020a), Phys. Rev. E 102 (1), 013211.
  45. Lyutikov, M. (2020b), Astrophys. J.  889 (2), 135, arXiv:1909.10409 [astro-ph.HE] .
  46. Lyutikov, M. (2021), Astrophys. J.  922 (2), 166, arXiv:2102.07010 [astro-ph.HE] .
  47. McQuinn, M. (2014), Astrophys. J. 780, L33, arXiv:1309.4451 .
  48. Melrose, D. B. (1978), Astrophys. J.  225, 557.
  49. Melrose, D. B. (2010), Astrophys. J.  725 (2), 1600, arXiv:1010.3442 [astro-ph.SR] .
  50. Melrose, D. B. (2017), Reviews of Modern Plasma Physics 1, 5, arXiv:1707.02009 [physics.plasm-ph] .
  51. Meszaros, P. (1992), High-energy radiation from magnetized neutron stars.
  52. Michel, F. C. (1982), Reviews of Modern Physics 54, 1.
  53. Nemiroff, R. J. (1994), Comments on Astrophysics 17, 189, astro-ph/9402012 .
  54. Piro, A. L. (2012), Astrophys. J.  755 (1), 80, arXiv:1205.6482 [astro-ph.HE] .
  55. Piro, A. L. (2016), Astrophys. J. 824, L32, arXiv:1604.04909 [astro-ph.HE] .
  56. Rankin, J. M. (1993), Astrophys. J.  405, 285.
  57. Ravi, V. (2019), Nature Astronomy 3, 928, arXiv:1907.06619 [astro-ph.HE] .
  58. Rees, M. J. (1977), Nature (London) 266 (5600), 333.
  59. Rickett, B. J. (1977), Ann. Rev. Astron. Astrophys. 15, 479.
  60. Rickett, B. J. (1990), Ann. Rev. Astron. Astrophys. 28, 561.
  61. Rowe, E. T. (1995), Astron. Astrophys. 296, 275.
  62. Spitkovsky, A. (2006), Astrophys. J. 648 (1), L51, arXiv:astro-ph/0603147 [astro-ph] .
  63. Stix, T. H. (1992), Waves in plasmas.
  64. Thompson, C. (2017a), Astrophys. J.  844 (1), 65, arXiv:1703.00394 [astro-ph.HE] .
  65. Thompson, C. (2017b), Astrophys. J.  844 (2), 162, arXiv:1703.00393 [astro-ph.HE] .
  66. Thompson, C. (2022), arXiv e-prints , arXiv:2209.11136arXiv:2209.11136 [astro-ph.HE] .
  67. Timokhin, A. N. (2006), Mon. Not. R. Astron. Soc. 368 (3), 1055, arXiv:astro-ph/0511817 [astro-ph] .
  68. Timokhin, A. N. (2010), Mon. Not. R. Astron. Soc. 408 (4), 2092, arXiv:1006.2384 [astro-ph.HE] .
  69. Tkachev, I. I. (2015), Soviet Journal of Experimental and Theoretical Physics Letters 101 (1), 1, arXiv:1411.3900 [astro-ph.HE] .
  70. Totani, T. (2013), Pubs. Astron. Soc. Japan 65, L12, arXiv:1307.4985 [astro-ph.HE] .
  71. Usov, V. V. (1987), Astrophys. J.  320, 333.
  72. Usov, V. V. (1992), Nature (London) 357 (6378), 472.
  73. Vachaspati, T. (2008), Phys. Rev. Lett.  101 (14), 141301, arXiv:0802.0711 [astro-ph] .
  74. Wald, R. M. (1974), Phys. Rev. D 10 (6), 1680.
  75. Waxman, E. (2017), Astrophys. J.  842, 34, arXiv:1703.06723 [astro-ph.HE] .
  76. Woosley, S. E. (2010), Astrophys. J. 719 (2), L204, arXiv:0911.0698 [astro-ph.HE] .
  77. Zhang, B. (2014), Astrophys. J. 780, L21, arXiv:1310.4893 [astro-ph.HE] .
  78. Zhang, B. (2016), Astrophys. J. 827, L31, arXiv:1602.04542 [astro-ph.HE] .
  79. Zhang, B. (2017), Astrophys. J. 836, L32, arXiv:1701.04094 [astro-ph.HE] .
  80. Zhang, B. (2018a), Astrophys. J. 867, L21, arXiv:1808.05277 [astro-ph.HE] .
  81. Zhang, B. (2018b), Astrophys. J. 854 (2), L21, arXiv:1801.05436 [astro-ph.HE] .
  82. Zhang, B. (2019), Astrophys. J. 873, L9, arXiv:1901.11177 [astro-ph.HE] .
  83. Zhang, B. (2020a), Frontiers of Physics 15 (5), 54502, arXiv:2006.08493 [physics.pop-ph] .
  84. Zhang, B. (2020b), Astrophys. J. 890 (2), L24, arXiv:2002.00335 [astro-ph.HE] .
  85. Zhang, B. (2020c), Nature (London) 587 (7832), 45, arXiv:2011.03500 [astro-ph.HE] .
  86. Zhang, B. (2020d), Nature (London) 582 (7812), 344, arXiv:2006.10727 [astro-ph.HE] .
  87. Zhang, B. (2021), Astrophys. J. 907 (1), L17, arXiv:2011.09921 [astro-ph.HE] .
  88. Zhang, B. (2022), Astrophys. J.  925 (1), 53, arXiv:2111.06571 [astro-ph.HE] .
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com