Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensuring Visual Commonsense Morality for Text-to-Image Generation (2212.03507v3)

Published 7 Dec 2022 in cs.CV and cs.CY

Abstract: Text-to-image generation methods produce high-resolution and high-quality images, but these methods should not produce immoral images that may contain inappropriate content from the perspective of commonsense morality. In this paper, we aim to automatically judge the immorality of synthesized images and manipulate these images into morally acceptable alternatives. To this end, we build a model that has three main primitives: (1) recognition of the visual commonsense immorality in a given image, (2) localization or highlighting of immoral visual (and textual) attributes that contribute to the immorality of the image, and (3) manipulation of an immoral image to create a morally-qualifying alternative. We conduct experiments and human studies using the state-of-the-art Stable Diffusion text-to-image generation model, demonstrating the effectiveness of our ethical image manipulation approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Seongbeom Park (3 papers)
  2. Suhong Moon (14 papers)
  3. Jinkyu Kim (51 papers)
Citations (1)