Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Monopoles, spectra of overlap fermions, and eta-prime meson in external magnetic fields (2212.03322v3)

Published 6 Dec 2022 in hep-lat, nucl-ex, and nucl-th

Abstract: The effects of external magnetic fields on monopoles, spectra of the overlap Dirac operator, instantons, and the mass of the eta-prime meson are examined by conducting lattice QCD simulations. The uniform external magnetic fields are applied to gauge field configurations with $N_{f}$ = 2 + 1 flavor quarks. The bare quark masses are tuned in order to obtain the physical values of the pion mass and of the ratio $\frac{m_{s}}{m_{u, d}}$. Standard configurations and configurations with applied external magnetic fields are generated in the color confinement and deconfinement phases. The intensity of external magnetic fields varies from $e|B|$ = 0.57 to 1.14 [GeV${2}$]. To examine the influence of external magnetic fields on monopoles, we first calculate the monopole density, measure the lengths of the monopole loops and compare them with the absolute value of the Polyakov loops. Next, using the generated configurations, we compute the eigenvalues and eigenvectors of the overlap Dirac operator, which preserves exact chiral symmetry. To investigate how external magnetic fields affect the spectra of the overlap Dirac operator, we compute spectral densities, compare fluctuations of the eigenvalues of the overlap Dirac operator with the predictions of random matrix theory, and estimate the number of instantons and anti-instantons from the topological charges. In addition, we analyze smearing effects on these observables and chiral symmetry breaking. Finally, we calculate the decay constant of the pseudoscalar meson, the chiral condensate, and the square mass of the eta-prime meson using the eigenvalues and eigenvectors. We then extrapolate the numerical results in the chiral limit and demonstrate the effects of external magnetic fields on the extrapolation results. This article presents preliminary results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. G. ’t Hooft. Gauge Fields with Unified Weak, Electromagnetic, and Strong Interactions. In 1975 High-Energy Particle Physics Divisional Conference of EPS (includes 8th biennial conf on Elem. Particles), 9 1975.
  2. S. Mandelstam. II. Vortices and quark confinement in non-Abelian gauge theories. Phys. Rep., 23:245, 1976.
  3. T. Schäfer and E. V. Shuryak. Instantons in QCD. Rev. Mod. Phys., 70(2):323, 1998.
  4. D. Diakonov. Instantons at work. Prog. Particle and Nuclear Physics, 51:173, 2003.
  5. M. Hasegawa. Monopole and instanton effects in QCD. JHEP, 09:113, 2020.
  6. M. Hasegawa. Color confinement, chiral symmetry breaking, and catalytic effect induced by monopole and instanton creations. Eur. Phys. J. C, 82:1040, 2022.
  7. The UAA{}_{\mbox{A}}start_FLOATSUBSCRIPT A end_FLOATSUBSCRIPT(1) problem on the lattice with Ginsparg–Wilson fermions. Nucl. Phys. B, 628:234, 2002.
  8. T. DeGrand and U. M. Heller. Witten-Veneziano relation, quenched QCD, and overlap fermions. Phys. Rev. D, 65:114501, 2002.
  9. M. Hasegawa. Instanton effects on chiral symmetry breaking and hadron spectroscopy. Proc. Sci., Lat2021:397, 2022.
  10. Tanmay Vachaspati. Magnetic fields from cosmological phase transitions. Phys. Lett. B, 265(3):258–261, 1991.
  11. Strongly Interacting Matter in Magnetic Fields, volume 871, Chapter 1, (arXiv:1211.6245) of Lect. Notes Phys. Springer Berlin, Heidelberg, 2013.
  12. Status of the nica project at jinr. Nuclear and Particle Physics Proceedings, 273-275:170–174, 2016. 37th International Conference on High Energy Physics (ICHEP).
  13. QCD quark condensate in external magnetic fields. Phys. Rev. D, 86:071502, Oct 2012.
  14. The QCD phase diagram for external magnetic fields. Journal of High Energy Physics, 2012:44, 2 2012.
  15. QCD phase transition in a strong magnetic background. Phys. Rev. D, 82:051501, Sep 2010.
  16. M. D’Elia and F. Negro. Chiral properties of strong interactions in a magnetic background. Phys. Rev. D, 83:114028, Jun 2011.
  17. P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on the lattice. Phys. Rev. D, 25:2649, 1982.
  18. H. Neuberger. Exactly massless quarks on the lattice. Phys. Lett. B, 417:141, 1998.
  19. H. Neuberger. More about exactly massless quarks on the lattice. Phys. Lett. B, 427:353, 1998.
  20. M. Lüscher. Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation. Phys. Lett. B, 428:342, 1998.
  21. S. Chandrasekharan. Lattice QCD with Ginsparg-Wilson fermions. Phys. Rev. D, 60:074503, 1999.
  22. A. Di Giacomo and M. Hasegawa. Monopoles in maximal abelian gauge, number of zero modes, and instantons. CYBERMEDIA HPC JOURNAL No 5, 21, Osaka University, Cybermedia Center, Osaka, Japan, July 2015. ISSN 2186-473X.
  23. Statistical Theory of the Energy Levels of Complex Systems. IV. J. Math. Phys., 4:701, 1963.
  24. Random-matrix theories in quantum physics: common concepts. Physics Reports, 299:189–428, 1998.
  25. C. Morningstar and M. Peardon. Analytic smearing of SU⁢(3)SU3\mathrm{SU}(3)roman_SU ( 3 ) link variables in lattice qcd. Phys. Rev. D, 69:054501, Mar 2004.
  26. Gauge-invariant smearing and matrix correlators using wilson fermions at β=6.2𝛽6.2\beta=6.2italic_β = 6.2. Phys. Rev. D, 47:5128–5137, Jun 1993.
  27. Lattice qcd with two dynamical flavors of domain wall fermions. Phys. Rev. D, 72:114505, Dec 2005.
  28. Comparison of topological charge definitions in lattice qcd. Eur. Phys. J. C, 80:424, May 2020.
  29. M. Teper. More methods for calculating the topological charge (density) of SU(N) lattice gauge fields in 3+1 dimensions. arXiv:2202.02528, 2022.
  30. η′superscript𝜂′\eta^{\prime}italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Meson from Two Flavor Dynamical Domain Wall Fermions. Progress of Theoretical Physics, 119(4):599–641, 04 2008.
  31. M. Hasegawa. ”Data tables for “Monopoles, spectra of overlap fermions, and eta-prime meson in external magnetic fields”. https://doi.org/10.6084/m9.figshare.21679526, 2022.
  32. Magnetic susceptibility and equation of state of Nf=2+1subscript𝑁𝑓21{N}_{f}=2+1italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 2 + 1 QCD with physical quark masses. Phys. Rev. D, 89:054506, Mar 2014.
  33. Magnetic field effects on the static quark potential at zero and finite temperature. Phys. Rev. D, 94:094007, Nov 2016.
  34. M. D’Elia. Chapter title, Lattice QCD Simulations in External Background Fields. Book title, Strongly Interacting Matter in Magnetic Fields, pages 181–208. Editors, D. Kharzeev, K. Landsteiner, A. Schmitt, and H.-U. Yee. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
  35. The QCD equation of state with dynamical quarks. Journal of High Energy Physics, 2010(11):77, 2010.
  36. The QCD transition temperature: results with physical masses in the continuum limit II. Journal of High Energy Physics, 2009(06):088, jun 2009.
  37. Glueball masses and string tension in lattice QCD. Phys. Lette. B, 192:163, 1987.
  38. Color comfinement, abelian dominance and the dynamics of magnetic monopoles in SU (3) gauge theory. Phys. Lett. B, 272:319, 1991.
  39. Dynamics of monopoles and flux tubes in two-flavor dynamical QCD. Phys. Rev. D, 70:074511, Oct 2004.
  40. V.N. Gribov. Quantization of non-abelian gauge theories. Nuclear Physics B, 139(1):1–19, 1978.
  41. New algorithm for gauge fixing in su(2) lattice gauge theory. Nuclear Physics B - Proceedings Supplements, 42(1):852–854, 1995.
  42. Topology and dynamics of the confinement mechanism. Nucl. Phys. B, 293:461, 1987.
  43. M. I. Polikarpov and K. Yee. Properties of the abelian projection fields in SU (N) lattice gluodynamics. Phys. Lett. B, 316:333, 1993.
  44. T. A. DeGrand and D. Toussaint. Topological excitations and Monte Carlo simulation of Abelian gauge theory. Phys. Rev. D, 22:2478, 1980.
  45. Monopole clusters and critical dynamics in four-dimensional U(1). Nucl. Phys. B, Proc. Suppl., 34:549, 1994.
  46. Deconfinement Transition and Monopoles in T ≠\neq≠ 0 SU(2) QCD. Prog. Theor. Phys., 93:1, 1995.
  47. Monopole condensation and color confinement. Phys. Lett. B, 198:516, 1987.
  48. Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices. Phys. Rev. D, 75:073015, Apr 2007.
  49. Numerical techniques for lattice QCD in the ϵitalic-ϵ\epsilonitalic_ϵ-regime. Comp. Phys. Comm., 153:31, 2003.
  50. Operator improvement for Ginsparg–Wilson fermions. Phys. Lett. B, 468:150, 1999.
  51. T. Banks, A. Casher. Chiral symmetry breaking in confining theories. Nucl. Phys. B, 169:103, 1980.
  52. Statistical analysis and the equivalent of a Thouless energy in lattice QCD Dirac spectra. Phys. Rev. D, 59:054501, 1999.
  53. O. Bohigas and M.-J. Giannoni. Chaotic motion and random matrix theories. In J. S. Dehesa, J. M. G. Gomez, and A. Polls, editors, Mathematical and Computational Methods in Nuclear Physics, pages 1–99, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.
  54. Spectral asymmetry and riemannian geometry. i. Mathematical Proceedings of the Cambridge Philosophical Society, 77(1):43–69, 1975.
  55. The index of elliptic operators: I. Annals of Mathematics, 87(3):484–530, 1968.
  56. A. Di Giacomo and M. Hasegawa. Instantons and monopoles. Phys. Rev. D, 91:054512, 2015.
  57. Lattice QCD in the ϵitalic-ϵ\epsilonitalic_ϵ-regime and random matrix theory. J. High Energy Phys., 11:023, 2003.
  58. Topological Susceptibility in SU(3) Gauge Theory. Phys. Rev. Lett., 94:032003, 2005.
  59. Topological susceptibility of Nfsubscript𝑁𝑓N_{f}italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 2 + 1 QCD from staggered fermions spectral projectors at high temperatures. Journal of High Energy Physics, 2022(197), 2022.
  60. E. V. Shuryak. THE ROLE OF INSTANTONS IN QUANTUM CHROMODYNAMICS (I). Nucl. Phys. B, 203:93, 1982.
  61. Behavior of Current Divergences under S⁢U3×S⁢U3𝑆subscript𝑈3𝑆subscript𝑈3SU_{3}\times SU_{3}italic_S italic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT × italic_S italic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Phys. Rev., 175:2195, 1968.
  62. F. Niedermayer. Exact chiral symmetry, topological charge and related topics. Nuclear Physics B - Proceedings Supplements, 73(1):105–119, 1999.
  63. Low-energy couplings of QCD from current correlations near the chiral limit. J. High Energy Phys., 04:013, 2004.
  64. T. DeGrand and S. Schaefer. Improving meson two-point functions in lattice QCD. Comp. Phys. Commun., 159:185, 2004.
  65. J. Wennekers and H. Wittig. On the renormalized scalar density in quenched QCD. J. High Energy Phys., 09:059, 2005.
  66. Practical all-to-all propagators for lattice QCD. Comput. Phys. Commun., 172(3):145–162, 2005.
  67. Low-Lying Mode Contribution to the Quenched Meson Correlators in the ϵitalic-ϵ\epsilonitalic_ϵ-Regime. Prog. Theor. Phys., 114:451–476, 2005.
  68. Low fermionic eigenmode dominance in qcd on the lattice. Phys. Rev. D, 64:114509, Nov 2001.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.