Automated Identification of Eviction Status from Electronic Health Record Notes (2212.02762v3)
Abstract: Objective: Evictions are important social and behavioral determinants of health. Evictions are associated with a cascade of negative events that can lead to unemployment, housing insecurity/homelessness, long-term poverty, and mental health problems. In this study, we developed a natural language processing system to automatically detect eviction status from electronic health record (EHR) notes. Materials and Methods: We first defined eviction status (eviction presence and eviction period) and then annotated eviction status in 5000 EHR notes from the Veterans Health Administration (VHA). We developed a novel model, KIRESH, that has shown to substantially outperform other state-of-the-art models such as fine-tuning pre-trained LLMs like BioBERT and BioClinicalBERT. Moreover, we designed a novel prompt to further improve the model performance by using the intrinsic connection between the two sub-tasks of eviction presence and period prediction. Finally, we used the Temperature Scaling-based Calibration on our KIRESH-Prompt method to avoid over-confidence issues arising from the imbalance dataset. Results: KIRESH-Prompt substantially outperformed strong baseline models including fine-tuning the BioClinicalBERT model to achieve 0.74672 MCC, 0.71153 Macro-F1, and 0.83396 Micro-F1 in predicting eviction period and 0.66827 MCC, 0.62734 Macro-F1, and 0.7863 Micro-F1 in predicting eviction presence. We also conducted additional experiments on a benchmark social determinants of health (SBDH) dataset to demonstrate the generalizability of our methods. Conclusion and Future Work: KIRESH-Prompt has substantially improved eviction status classification. We plan to deploy KIRESH-Prompt to the VHA EHRs as an eviction surveillance system to help address the US Veterans' housing insecurity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.